Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBRULL, Stéphane
hal.structure.identifierDepartment of Mathematics [Imperial College London]
dc.contributor.authorDEGOND, Pierre
hal.structure.identifierInstitut de Mathématiques de Toulouse UMR5219 [IMT]
dc.contributor.authorDELUZET, Fabrice
hal.structure.identifierLaboratoire Paul Painlevé - UMR 8524 [LPP]
dc.contributor.authorMOUTON, Alexandre
dc.date.accessioned2024-04-04T03:21:23Z
dc.date.available2024-04-04T03:21:23Z
dc.date.created2011
dc.date.issued2011
dc.identifier.issn1937-5093
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194655
dc.description.abstractEnThe present work is devoted to the simulation of a strongly ma g- netized plasma considered as a mixture of an ion fluid and an el ectron fluid. For the sake of simplicity, we assume that the model is isothe rmal and de- scribed by Euler equations coupled with a term representing the Lorentz force. Moreover we assume that both Euler systems are coupled throu gh a quasi- neutrality constraint of the form n i = n e . The numerical method which is described in the present document is based on an Asymptotic- Preserving semi- discretization in time of a variant of this two-fluid Euler-L orentz model with a small perturbation of the quasi-neutrality constraint. F irstly, we present the two-fluid model and the motivations for introducing a small p erturbation into the quasi-neutrality equation, then we describe the time se mi-discretization of the perturbed model and a fully-discrete finite volume sch eme based on it. Finally, we present some numerical results which have been o btained with this method.
dc.language.isoen
dc.publisherAIMS
dc.title.enAn asymptotic preserving scheme for a bifluid Euler-Lorentz system.
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalKinetic and Related Models
bordeaux.page10-40
bordeaux.volume4
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01027419
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01027419v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Kinetic%20and%20Related%20Models&rft.date=2011&rft.volume=4&rft.spage=10-40&rft.epage=10-40&rft.eissn=1937-5093&rft.issn=1937-5093&rft.au=BRULL,%20St%C3%A9phane&DEGOND,%20Pierre&DELUZET,%20Fabrice&MOUTON,%20Alexandre&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée