An asymptotic preserving scheme for a bifluid Euler-Lorentz system.
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BRULL, Stéphane | |
hal.structure.identifier | Department of Mathematics [Imperial College London] | |
dc.contributor.author | DEGOND, Pierre | |
hal.structure.identifier | Institut de Mathématiques de Toulouse UMR5219 [IMT] | |
dc.contributor.author | DELUZET, Fabrice | |
hal.structure.identifier | Laboratoire Paul Painlevé - UMR 8524 [LPP] | |
dc.contributor.author | MOUTON, Alexandre | |
dc.date.accessioned | 2024-04-04T03:21:23Z | |
dc.date.available | 2024-04-04T03:21:23Z | |
dc.date.created | 2011 | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1937-5093 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194655 | |
dc.description.abstractEn | The present work is devoted to the simulation of a strongly ma g- netized plasma considered as a mixture of an ion fluid and an el ectron fluid. For the sake of simplicity, we assume that the model is isothe rmal and de- scribed by Euler equations coupled with a term representing the Lorentz force. Moreover we assume that both Euler systems are coupled throu gh a quasi- neutrality constraint of the form n i = n e . The numerical method which is described in the present document is based on an Asymptotic- Preserving semi- discretization in time of a variant of this two-fluid Euler-L orentz model with a small perturbation of the quasi-neutrality constraint. F irstly, we present the two-fluid model and the motivations for introducing a small p erturbation into the quasi-neutrality equation, then we describe the time se mi-discretization of the perturbed model and a fully-discrete finite volume sch eme based on it. Finally, we present some numerical results which have been o btained with this method. | |
dc.language.iso | en | |
dc.publisher | AIMS | |
dc.title.en | An asymptotic preserving scheme for a bifluid Euler-Lorentz system. | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Kinetic and Related Models | |
bordeaux.page | 10-40 | |
bordeaux.volume | 4 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01027419 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01027419v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Kinetic%20and%20Related%20Models&rft.date=2011&rft.volume=4&rft.spage=10-40&rft.epage=10-40&rft.eissn=1937-5093&rft.issn=1937-5093&rft.au=BRULL,%20St%C3%A9phane&DEGOND,%20Pierre&DELUZET,%20Fabrice&MOUTON,%20Alexandre&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |