Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLASJAUNIAS, Alain
dc.contributor.authorKHALIL, Ayadi
dc.date.accessioned2024-04-04T03:19:20Z
dc.date.available2024-04-04T03:19:20Z
dc.date.created2014-11
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194495
dc.description.abstractEnCasually introduced thirty years ago, a simple algebraic equation of degree 4 with coefficients in F_p[T] has a solution in the field of power series over the finite field F_p. For each p>3, the continued fraction expansion of this solution is remarkable and it has a different general pattern according to the remainder, 1 or 2, in the division of p by 3. We describe two very large families of algebraic continued fractions, each containing these solutions, according to the class of p modulo 3. We compute the irrationality measure for these algebraic continued fractions, and as a consequence, we obtain two different values for the solution of the quartic equation, only depending on the class of p modulo 3.
dc.language.isoen
dc.subject.enContinued fractions
dc.subject.enFields of power series
dc.subject.enFinite fields.
dc.title.enOn a quartic equation and two families of hyperquadratic continued fractions in pwer series fields
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1412.0388
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01108104
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01108104v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=LASJAUNIAS,%20Alain&KHALIL,%20Ayadi&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée