Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
hal.structure.identifierEuropean Center for Advanced Research in Economics and Statistics [ECARES]
hal.structure.identifierDépartement de Mathématique [Bruxelles] [ULB]
dc.contributor.authorCHARLIER, Isabelle
hal.structure.identifierDépartement de Mathématique [Bruxelles] [ULB]
hal.structure.identifierEuropean Center for Advanced Research in Economics and Statistics [ECARES]
dc.contributor.authorPAINDAVEINE, Davy
hal.structure.identifierQuality control and dynamic reliability [CQFD]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorSARACCO, Jérôme
dc.date.accessioned2024-04-04T03:19:15Z
dc.date.available2024-04-04T03:19:15Z
dc.date.issued2015
dc.identifier.issn0378-3758
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194489
dc.description.abstractEnIn this paper, we use quantization to construct a nonparametric estimator of conditional quantiles of a scalar response Y given a d-dimensional vector of covariates X. First we focus on the population level and show how optimal quantization of X, which consists in discretizing X by projecting it on an appropriate grid of N points, allows to approximate conditional quantiles of Y given X. We show that this approximation is arbitrarily good as N goes to infinity and provide a rate of convergence for the approximation error. Then we turn to the sample case and define an estimator of conditional quantiles based on quantization ideas. We prove that this estimator is consistent for its fixed-N population counterpart. The results are illustrated on a numerical example. Dominance of our estimators over local constant/linear ones and nearest neighbor ones is demonstrated through extensive simulations in the companion paper Charlier et al. (2014).
dc.language.isoen
dc.publisherElsevier
dc.title.enConditional quantile estimation through optimal quantization
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jspi.2014.08.003
dc.subject.halMathématiques [math]/Statistiques [math.ST]
bordeaux.journalJournal of Statistical Planning and Inference
bordeaux.page14 - 30
bordeaux.volume156
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01108482
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01108482v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Statistical%20Planning%20and%20Inference&rft.date=2015&rft.volume=156&rft.spage=14%20-%2030&rft.epage=14%20-%2030&rft.eissn=0378-3758&rft.issn=0378-3758&rft.au=CHARLIER,%20Isabelle&PAINDAVEINE,%20Davy&SARACCO,%20J%C3%A9r%C3%B4me&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record