Afficher la notice abrégée

hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMASCOT, Nicolas
dc.date.accessioned2024-04-04T03:19:09Z
dc.date.available2024-04-04T03:19:09Z
dc.date.created2013
dc.date.issued2013-12
dc.identifier.issn0009-725X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194478
dc.description.abstractEnWe compute modular Galois representations associated with a newform $f$, and study the related problem of computing the coefficients of $f$ modulo a small prime $\ell$. To this end, we design a practical variant of the complex approximations method presented in the book edited by B. Edixhoven and J.-M. Couveignes. Its efficiency stems from several new ingredients. For instance, we use fast exponentiation in the modular jacobian instead of analytic continuation, which greatly reduces the need to compute abelian integrals, since most of the computation handles divisors. Also, we introduce an efficient way to compute arithmetically well-behaved functions on jacobians, a method to expand cuspforms in quasi-linear time, and a trick making the computation of the image of a Frobenius element by a modular Galois representation more effective. We illustrate our method on the newforms $\Delta$ and $E_4 \Delta$, and manage to compute for the first time the associated faithful representations modulo $\ell$ and the values modulo $\ell$ of Ramanujan's $\tau$ function at huge primes for $\ell \in {11,13,17,19,29}$. In particular, we get rid of the sign ambiguity stemming from the use of a non-faithful representation as in J. Bosman's work. As a consequence, we can compute the values of $\tau(p) \bmod 2^11.3^6.5^3.7.11.13.17.19.23.29.691 \approx 2.8.10^19$ for huge primes $p$. These representations lie in the jacobian of modular curves of genus up to 22.
dc.language.isoen
dc.publisherSpringer-Verlag Italia
dc.subject.enmodular form
dc.subject.enmodular jacobian
dc.subject.enalgorithmic
dc.subject.enGalois representation
dc.title.enComputing modular Galois representations
dc.typeArticle de revue
dc.identifier.doi10.1007/s12215-013-0136-4
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.subject.halInformatique [cs]/Bibliothèque électronique [cs.DL]
dc.identifier.arxiv1211.1635
dc.description.sponsorshipEuropeAlgorithmic Number Theory in Computer Science
bordeaux.journalRendiconti del Circolo Matematico di Palermo
bordeaux.page451 - 476
bordeaux.volume62
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01110451
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01110451v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Rendiconti%20del%20Circolo%20Matematico%20di%20Palermo&rft.date=2013-12&rft.volume=62&rft.issue=3&rft.spage=451%20-%20476&rft.epage=451%20-%20476&rft.eissn=0009-725X&rft.issn=0009-725X&rft.au=MASCOT,%20Nicolas&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée