Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBELRAOUTI, Mehdi
dc.date.accessioned2024-04-04T03:18:44Z
dc.date.available2024-04-04T03:18:44Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194441
dc.description.abstractEnWe study the asymptotic behavior of convex Cauchy hypersurfaces on maximal globally hyperbolic spatially compact space-times of constant curvature. We generalise the result of [11] to the (2+1) de Sitter and anti de Sitter cases. We prove that in these cases the level sets of quasi-concave times converge in the Gromov equivariant topology, when time goes to 0, to a real tree. Moreover, this limit does not depend on the choice of the time function. We also consider the problem of asymptotic behavior in the flat (n+1) dimensional case. We prove that the level sets of quasi-concave times converge in the Gromov equivariant topology, when time goes to 0, to a CAT (0) metric space. Moreover, this limit does not depend on the choice of the time function.
dc.language.isoen
dc.title.enAsymptotic behavior of Cauchy hypersurfaces in constant curvature space-times
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
dc.identifier.arxiv1503.06343
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01134068
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01134068v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BELRAOUTI,%20Mehdi&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée