Afficher la notice abrégée

hal.structure.identifierLaboratoire d'Analyse, Topologie, Probabilités [LATP]
dc.contributor.authorGUÈS, Olivier
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMETIVIER, Guy
hal.structure.identifierDepartment of Mathematics [Chapel Hill]
dc.contributor.authorWILLIAMS, Mark
hal.structure.identifierMathematics Department
dc.contributor.authorZUMBRUN, Kevin
dc.date.accessioned2024-04-04T03:18:37Z
dc.date.available2024-04-04T03:18:37Z
dc.date.issued2005
dc.identifier.issn0003-9527
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194428
dc.description.abstractEnIn this paper we present a new approach to the study of linear and nonlinear stability of inviscid multidimensional shock waves under small viscosity perturbation, yielding optimal estimates and eventually an extension to the viscous case of the celebrated theorem of Majda on existence and stability of multidimensional shock waves. More precisely, given a curved Lax shock solution u0 to a hyperbolic system of conservation laws, we construct nearby viscous shock solutions uε to a parabolic viscous perturbation of the hyperbolic system which converge to u0 as viscosity ε → 0 and satisfy an appropriate (conormal) version of Majda's stability estimate. The main new feature of the paper is the derivation of maximal and optimal estimates for the linearization of the parabolic problem about a highly singular approximate solution. These estimates are more robust than the singular estimates obtained in our previous work, and permit us to remove an earlier assumption limiting how much the inviscid shock we start with can deviate from flatness. The key to the new approach is to work with the full linearization of the parabolic problem, that is, the linearization with respect to both uε and the unknown viscous front, and to allow variation of the front at all stages – not only in the construction of the approximate solution as done in previous work, but also in the final error equation. After reformulating the problem as a transmission problem, we show that the linearized problem can be desingularized and optimal estimates obtained by adding an appropriate extra boundary condition involving the front. The extra condition determines a local evolution rule for the viscous front.
dc.language.isoen
dc.publisherSpringer Verlag
dc.title.enExistence and Stability of Multidimensional Shock Fronts in the Vanishing Viscosity Limit
dc.typeArticle de revue
dc.identifier.doi10.1007/s00205-004-0342-5
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalArchive for Rational Mechanics and Analysis
bordeaux.pagepp 151--244
bordeaux.volume175
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00113902
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00113902v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Archive%20for%20Rational%20Mechanics%20and%20Analysis&rft.date=2005&rft.volume=175&rft.spage=pp%20151--244&rft.epage=pp%20151--244&rft.eissn=0003-9527&rft.issn=0003-9527&rft.au=GU%C3%88S,%20Olivier&METIVIER,%20Guy&WILLIAMS,%20Mark&ZUMBRUN,%20Kevin&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée