Afficher la notice abrégée

hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorFILIPPINI, Andrea Gilberto
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorKAZOLEA, Maria
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorRICCHIUTO, Mario
dc.date.accessioned2024-04-04T03:18:04Z
dc.date.available2024-04-04T03:18:04Z
dc.date.issued2015-06
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194369
dc.description.abstractEnWe consider a two steps solution procedure composed by: a first step where the non hydrostatic source term is recovered by inverting the elliptic coercive operator associated to the dispersive effects; a second step which involves the solution of the hyperbolic shallow water system with the source term, computed in the previous phase, which accounts for the non-hydrostatic effects. Appropriate numerical methods that can be also generalized on arbitrary unstructured meshes are used to discretize the two stages: the standard $C^0$ Galerkin finite element method for the elliptic phase; either third order Finite Volume of third order stabilized Finite Element methods for the hyperbolic phase. The discrete dispersion properties of the fully coupled schemes obtained are studied, showing accuracy close or better to that of a fourth order finite difference method. The hybrid approach of locally reverting to the nonlinear shallow water equations is used to recover energy dissipation in breaking regions. To this scope we evaluate two strategies~: simply neglecting the non-hydrostatic contribution in the hyperbolic phase~; imposing a tighter coupling of the two phases, with a wave breaking indicator embedded in the elliptic phase to smoothly turn off the dispersive effects. The discrete models obtained are thoroughly tested on benchmarks involving wave dispersion, breaking and runup, showing a very promising potential for the simulation of complex near shore wave physics in terms of accuracy and robustness.
dc.description.sponsorshipTsunamis en Atlantique et MaNche : Définition des Effets par Modélisation - ANR-11-RSNR-0023
dc.language.isoen
dc.title.enA flexible genuinely nonlinear approach for wave propagation, breaking and runup
dc.typeRapport
dc.subject.halInformatique [cs]/Modélisation et simulation
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionInria Bordeaux Sud-Ouest
bordeaux.type.institutionINRIA
bordeaux.type.reportrr
hal.identifierhal-01166295
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01166295v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2015-06&rft.au=FILIPPINI,%20Andrea%20Gilberto&KAZOLEA,%20Maria&RICCHIUTO,%20Mario&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée