Mostrar el registro sencillo del ítem

hal.structure.identifierAmpère, Département Méthodes pour l'Ingénierie des Systèmes [MIS]
dc.contributor.authorKRÄHENBÜHL, Laurent
hal.structure.identifierApplied and Computational Electromagnetics [Liège] [ACE]
dc.contributor.authorDULAR, Patrick
hal.structure.identifierLaboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
dc.contributor.authorPÉRON, Victor
hal.structure.identifierGroupe de Recherche en Electromagnétisme [LAPLACE-GRE]
dc.contributor.authorPERRUSSEL, Ronan
hal.structure.identifierCatholic University of Leuven = Katholieke Universiteit Leuven [KU Leuven]
dc.contributor.authorSABARIEGO, Ruth
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorPOIGNARD, Clair
dc.date.accessioned2024-04-04T03:17:46Z
dc.date.available2024-04-04T03:17:46Z
dc.date.issued2015-06-29
dc.date.conference2015-06-28
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194338
dc.description.abstractEnThe impedance boundary condition methods (IBCs) are among the most efficient for solving time-harmonic eddy-current problems with a small skin depth (delta). When the solution is required for a wide range of frequencies (or material conductivities) the standard approach is not efficient, because it leads to the solution of a finite element (FE) complex-valued problem for each frequency (or conductivity). Moreover, the error of IBC grows much too quickly with delta. As an extension of previous work, we propose here in more details a possible method of parameterization in delta of the 2D small-delta eddy-currents problem. This numerically efficient method gives a very good precision for all the “difficult” frequencies, that means from the frequency corresponding to the last good solution obtainable by meshing the conductor, to the infinite limit (perfect conductor solution).
dc.language.isoen
dc.source.titleProceedings of the 20th IEEE Conference on the Computation of Electromagnetic Fields
dc.subject.enSurface impedance
dc.subject.enparametric solutions
dc.subject.ensmall skin depth
dc.title.enEfficient delta-parametrization of 2D Surface-Impedance solutions
dc.typeCommunication dans un congrès
dc.subject.halSciences de l'ingénieur [physics]/Energie électrique
dc.subject.halInformatique [cs]/Bibliothèque électronique [cs.DL]
bordeaux.page442
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleCompumag 2015
bordeaux.countryCA
bordeaux.title.proceedingProceedings of the 20th IEEE Conference on the Computation of Electromagnetic Fields
bordeaux.conference.cityMontréal
bordeaux.peerReviewedoui
hal.identifierhal-01174983
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2015-07-02
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01174983v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Proceedings%20of%20the%2020th%20IEEE%20Conference%20on%20the%20Computation%20of%20Electromagnetic%20Fields&rft.date=2015-06-29&rft.spage=442&rft.epage=442&rft.au=KR%C3%84HENB%C3%9CHL,%20Laurent&DULAR,%20Patrick&P%C3%89RON,%20Victor&PERRUSSEL,%20Ronan&SABARIEGO,%20Ruth&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem