Afficher la notice abrégée

hal.structure.identifierLaboratoire de Mathématiques d'Orsay [LMO]
dc.contributor.authorPANKRASHKIN, Konstantin
hal.structure.identifierÉquipe EDP et Physique Mathématique
dc.contributor.authorPOPOFF, Nicolas
dc.date.accessioned2024-04-04T03:17:35Z
dc.date.available2024-04-04T03:17:35Z
dc.date.created2015
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194318
dc.description.abstractEnWe consider the Laplacian on a class of smooth domains Ω ⊂ R ν , ν ≥ 2, with attractive Robin boundary conditions: Q Ω α u = −∆u, ∂u ∂n = αu on ∂Ω, α > 0, where n is the outer unit normal, and study the asymptotics of its eigenvalues Ej(Q Ω α) as well as some other spectral properties for α tending to +∞. We work with both compact domains and non-compact ones with a suitable behavior at infinity. For domains with compact C 2 boundaries and fixed j, we show that Ej(Q Ω α) = −α 2 + µj (α) + O(log α), where µj(α) is the j th eigenvalue, as soon as it exists, of −∆S−(ν−1)αH with (−∆S) and H being respectively the positive Laplace-Beltrami operator and the mean curvature on ∂Ω. Analogous results are obtained for a class of domains with non-compact boundaries. In particular, we discuss the existence of eigenvalues for non-compact domains and the existence of spectral gaps for periodic domains. We also show that the remainder estimate can be improved under stronger regularity assumptions. The effective Hamiltonian −∆S − (ν − 1)αH enters the framework of semi-classical Schrödinger operators on manifolds, and we provide the asymptotics of its eigenvalues for large α under various geometric assumptions. In particular, we describe several cases for which our asymptotics provides gaps between the eigenvalues of Q Ω α for large α.
dc.language.isoen
dc.title.enAn effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01202601
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01202601v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=PANKRASHKIN,%20Konstantin&POPOFF,%20Nicolas&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée