Afficher la notice abrégée

hal.structure.identifierUniversidad Carlos III de Madrid [Madrid] [UC3M]
dc.contributor.authorCHAVEZ, C.E.
hal.structure.identifierIHU-LIRYC
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorZEMZEMI, Nejib
hal.structure.identifierIHU-LIRYC
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCOUDIÈRE, Yves
hal.structure.identifierUniversidad Carlos III de Madrid [Madrid] [UC3M]
dc.contributor.authorALONSO-ATIENZA, Felipe
hal.structure.identifierUniversidad Carlos III de Madrid [Madrid] [UC3M]
dc.contributor.authorALVAREZ, Diegó
dc.date.accessioned2024-04-04T03:17:04Z
dc.date.available2024-04-04T03:17:04Z
dc.date.issued2015-06-21
dc.date.conference2017-06-25
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194276
dc.description.abstractEnThe inverse problem in cardiology (IPC) has been formulated in different ways in order to non invasively obtain valuable infor-mations about the heart condition. Most of the formulations solve the IPC under a quasistatic assumption neglecting the dynamic behavior of the electrical wave propagation in the heart. In this work we take into account this dynamic behavior by constraining the cost function with the monodomain model. We use an iterative algorithm combined with a level set formulation allowing us to localize an ischemic region in the heart. The method has been presented by Alvarez et al in [1] and [4], in which the authors developed a method for localize ischemic regions using a simple phenomenological model in a 2D cardiac tissue. In this work, we analyze the performance of this method in different 3D geometries. The inverse procedure exploits the spatiotemporal correlations contained in the observed data, which is formulated as a parametric adjust of a mathematical model that minimizes the misfit between the simulated and the observed data. We start by testing this method on two concentric spheres and then analyze the performance in a 3D real anatomical geometry. Both for analytical and real life geometries, numerical results show that using this algorithm we are capable of identifying the position and, in most of the cases, approximate the size of the ischemic regions.
dc.language.isoen
dc.publisherSpringer International Publishing
dc.subject.enInverse Problem
dc.subject.enElectrocardiography Imaging
dc.title.enInverse Problem of Electrocardiography: estimating the location of cardiac isquemia in a 3D geometry
dc.typeCommunication dans un congrès
dc.identifier.doi10.1007/978-3-319-20309-6_45
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Optimisation et contrôle [math.OC]
bordeaux.volume9126
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleFunctional Imaging and modelling of the heart (FIMH2015)
bordeaux.countryNL
bordeaux.conference.cityMaastricht
bordeaux.peerReviewedoui
hal.identifierhal-01222385
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2017-06-27
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01222385v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2015-06-21&rft.volume=9126&rft.au=CHAVEZ,%20C.E.&ZEMZEMI,%20Nejib&COUDI%C3%88RE,%20Yves&ALONSO-ATIENZA,%20Felipe&ALVAREZ,%20Dieg%C3%B3&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée