Mostrar el registro sencillo del ítem
Stability analysis of the POD reduced order method for solving the bidomain model in cardiac electrophysiology
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
dc.contributor.author | CORRADO, Cesare | |
hal.structure.identifier | Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] [LR-LAMSIN-ENIT] | |
dc.contributor.author | LASSOUED, Jamila | |
hal.structure.identifier | Tunis El Manar University [University of Tunis El Manar] [Tunisia] = Université de Tunis El Manar [Tunisie] = جامعة تونس المنار (ar) [UTM] | |
hal.structure.identifier | Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] [LR-LAMSIN-ENIT] | |
dc.contributor.author | MAHJOUB, Moncef | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
dc.contributor.author | ZEMZEMI, Nejib | |
dc.date.accessioned | 2024-04-04T03:16:43Z | |
dc.date.available | 2024-04-04T03:16:43Z | |
dc.date.issued | 2015-12-04 | |
dc.identifier.issn | 0025-5564 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194241 | |
dc.description.abstractEn | In this work we show the numerical stability of the Proper Orthogonal Decomposition (POD) reduced order method used in cardiac electrophysiology applications. The difficulty of proving the stability comes from the fact that we are interested in the bidomain model, which is a system of degenerate parabolic equations coupled to a system of ODEs representing the cell membrane electrical activity. The proof of the stability of this method is based an a priori estimate controlling the gap between the reduced order solution and the Galerkin finite element one. We present some numerical simulations confirming the theoretical results. We also combine the POD method with a time splitting scheme allowing a faster solution of the bidomain problem and show numerical results. Finally, we conduct numerical simulation in 2D illustrating the stability of the POD method in its sensitivity to the ionic model parameters. We also perform 3D simulation using a massively parallel code. We show the computational gain using the POD reduced order model. We also show that this method has a better scalability than the full finite element method. | |
dc.description.sponsorship | L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | proper orthogonal decomposition | |
dc.subject.en | reduced order method | |
dc.subject.en | Bidomain equation | |
dc.subject.en | a priori estimates | |
dc.subject.en | ionic parameters | |
dc.subject.en | stability analysis | |
dc.subject.en | Mitchell-Schaeffer model | |
dc.title.en | Stability analysis of the POD reduced order method for solving the bidomain model in cardiac electrophysiology | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.mbs.2015.12.005 | |
dc.subject.hal | Informatique [cs]/Modélisation et simulation | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Mathematical Biosciences | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01245685 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01245685v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Biosciences&rft.date=2015-12-04&rft.eissn=0025-5564&rft.issn=0025-5564&rft.au=CORRADO,%20Cesare&LASSOUED,%20Jamila&MAHJOUB,%20Moncef&ZEMZEMI,%20Nejib&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |