Conditional Quantile Estimation based on Optimal Quantization: from Theory to Practice
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
hal.structure.identifier | European Center for Advanced Research in Economics and Statistics [ECARES] | |
hal.structure.identifier | Département de Mathématique [Bruxelles] [ULB] | |
dc.contributor.author | CHARLIER, Isabelle | |
hal.structure.identifier | Département de Mathématique [Bruxelles] [ULB] | |
hal.structure.identifier | European Center for Advanced Research in Economics and Statistics [ECARES] | |
dc.contributor.author | PAINDAVEINE, Davy | |
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | SARACCO, Jérôme | |
dc.date.accessioned | 2024-04-04T03:16:18Z | |
dc.date.available | 2024-04-04T03:16:18Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0167-9473 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194205 | |
dc.description.abstractEn | Small-sample properties of a nonparametric estimator of conditional quantiles based on optimal quantization, that was recently introduced (J. Statist. Plann. Inference, 156, 14–30, 2015), are investigated. More precisely, (i) the practical implementation of this estimator is discussed (by proposing in particular a method to properly select the corresponding smoothing parameter, namely the number of quantizers) and (ii) its finite- sample performances are compared to those of classical competitors. Monte Carlo studies reveal that the quantization-based estimator competes well in all cases and sometimes dominates its competitors, particularly when the regression function is quite complex. A real data set is also treated. While the main focus is on the case of a univariate covariate, simulations are also conducted in the bivariate case. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Conditional quantiles | |
dc.subject.en | Optimal quantization | |
dc.subject.en | Nonparametric regression | |
dc.title.en | Conditional Quantile Estimation based on Optimal Quantization: from Theory to Practice | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Statistiques [math.ST] | |
bordeaux.journal | Computational Statistics and Data Analysis | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01108504 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01108504v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computational%20Statistics%20and%20Data%20Analysis&rft.date=2015&rft.eissn=0167-9473&rft.issn=0167-9473&rft.au=CHARLIER,%20Isabelle&PAINDAVEINE,%20Davy&SARACCO,%20J%C3%A9r%C3%B4me&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |