Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorBENDAHMANE, Mostafa
hal.structure.identifierJohann Radon Institute for Computational and Applied Mathematics [RICAM]
dc.contributor.authorCHAMAKURI, Nagaiah
dc.date.accessioned2024-04-04T03:15:57Z
dc.date.available2024-04-04T03:15:57Z
dc.date.issued2017-07-18
dc.identifier.issn0022-0396
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194172
dc.description.abstractEnThis work is concerned with the study of the convergence analysis for an optimal control of bidomain-bath model by using the finite element scheme. The bidomain-bath model equations describe the cardiac bioelectric activity at the tissue and bath volumes where the control acts at the boundary of the tissue domain. We establish the existence of the finite element scheme, and convergence of the unique weak solution of the direct bidomain-bath model. The convergence proof is based on deriving a series of a priori estimates and using a general L 2-compactness criterion. Moreover, the well-posedness of the adjoint problem and the first order necessary optimality conditions are shown. Comparing to the direct problem, the convergence proof of the adjoint problem is based on using a general L 1-compactness criterion. The numerical tests are demonstrated which achieve the successful cardiac defibrillation by utilizing less total current. Finally, the robustness of the Newton optimization algorithm is presented for different finer mesh geometries. 1. Introduction. The electrical behavior of the cardiac tissue surrounded by a nonconductive bath is described by a coupled partial and ordinary differential equations which are so called bidomain model equations [17, 22, 24]. The bidomain model equations consist of two parabolic partial differential equations (PDEs) which describe the dynamics of the intra and the extracellular potentials. The PDEs coupled with an ordinary differential equations which model the ionic currents associated with the reaction terms. Furthermore , an additional Poisson problem has to be solved when the cardiac tissue is immersed in a conductive fluid, e.g. tissue bath in an experimental context or a surrounding torso to model in vivo scenarios.
dc.language.isoen
dc.publisherElsevier
dc.subject.enOptimal control
dc.subject.enBidomain model
dc.subject.enWeak solution
dc.subject.enFinite Element Method
dc.subject.enFirst order optimality conditions
dc.subject.enCardiac electrophysiology
dc.title.enNumerical Analysis of a Finite Element Method for an Optimal Control of Bidomain-bath Model
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jde.2017.04.001
dc.subject.halMathématiques [math]/Optimisation et contrôle [math.OC]
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaire
bordeaux.journalJournal of Differential Equations
bordeaux.page2419–2456
bordeaux.volume263
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue5
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01259773
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01259773v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Differential%20Equations&rft.date=2017-07-18&rft.volume=263&rft.issue=5&rft.spage=2419%E2%80%932456&rft.epage=2419%E2%80%932456&rft.eissn=0022-0396&rft.issn=0022-0396&rft.au=BENDAHMANE,%20Mostafa&CHAMAKURI,%20Nagaiah&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée