A 3D boundary optimal control for the bidomain-bath system modeling the thoracic shock therapy for cardiac defibrillation
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BENDAHMANE, Mostafa | |
hal.structure.identifier | Johann Radon Institute for Computational and Applied Mathematics [RICAM] | |
dc.contributor.author | CHAMAKURI, Nagaiah | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | COMTE, Eloïse | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | AINSEBA, Bedr'Eddine | |
dc.date.accessioned | 2024-04-04T03:15:45Z | |
dc.date.available | 2024-04-04T03:15:45Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194168 | |
dc.description.abstractEn | This work is dedicated to study the cardiac defibrillation problem by using an optimal thoracic electroshock treatment. The problem is formulated as an optimal control problem in a 3D domain surrounded by the bath and including the heart. The control corresponds to the thoracic electroshock and the model describing the electrical activity in the heart is the bidomain model. The bidomain model is coupled with the quasi-static Maxwell's equation to consider the effect of an external bathing medium. The existence and uniqueness of a weak solution for the direct problem is assessed as well as the existence of a weak solution for the adjoint problem. The numerical discretization is realized using a finite element method for the spatial discretization and linearly implicit Runge-Kutta methods for the temporal discretization of the partial differential equations. The numerical results are demonstrated for the termination of re-entry waves. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.title.en | A 3D boundary optimal control for the bidomain-bath system modeling the thoracic shock therapy for cardiac defibrillation | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.jmaa.2016.01.018 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Optimisation et contrôle [math.OC] | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
dc.subject.hal | Sciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaire | |
bordeaux.journal | Journal of Mathematical Analysis and Applications | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01261547 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01261547v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Mathematical%20Analysis%20and%20Applications&rft.date=2016&rft.eissn=0022-247X&rft.issn=0022-247X&rft.au=BENDAHMANE,%20Mostafa&CHAMAKURI,%20Nagaiah&COMTE,%20Elo%C3%AFse&AINSEBA,%20Bedr'Eddine&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |