Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBILU, Yuri
dc.contributor.authorLUCA, Florian
hal.structure.identifierUniversité de Bâle = University of Basel = Basel Universität [Unibas]
dc.contributor.authorMASSER, David
dc.date.accessioned2024-04-04T03:15:44Z
dc.date.available2024-04-04T03:15:44Z
dc.date.issued2017
dc.identifier.issn1937-0652
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194166
dc.description.abstractEnAndr\'e's celebrated Theorem of 1998 implies that each complex straight line (apart from obvious exceptions) contains at most finitely many points whose both coordinates are j-invariants of elliptic curves with complex multiplication. We show that there are only a finite number of such lines which contain more than two such points. As there is a line through any two complex points, this is best possible.
dc.language.isoen
dc.publisherMathematical Sciences Publishers
dc.title.enCollinear CM-points
dc.typeArticle de revue
dc.identifier.doi10.2140/ant.2017.11.1047
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1503.08378
bordeaux.journalAlgebra & Number Theory
bordeaux.page1047-1087
bordeaux.volume11
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01262079
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01262079v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Algebra%20&%20Number%20Theory&rft.date=2017&rft.volume=11&rft.spage=1047-1087&rft.epage=1047-1087&rft.eissn=1937-0652&rft.issn=1937-0652&rft.au=BILU,%20Yuri&LUCA,%20Florian&MASSER,%20David&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée