Mostrar el registro sencillo del ítem

hal.structure.identifierLaboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
dc.contributor.authorPÉRON, Victor
hal.structure.identifierInstitut für Mathematik [Berlin]
dc.contributor.authorSCHMIDT, Kersten
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDURUFLÉ, Marc
dc.date.accessioned2024-04-04T03:14:58Z
dc.date.available2024-04-04T03:14:58Z
dc.date.created2015
dc.date.issued2016
dc.identifier.issn0036-1399
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194114
dc.description.abstractEnWe propose equivalent transmission conditions of order 1 and 2 for thin and highly conducting sheets for the time-harmonic Maxwell's equation in three dimension. The transmission conditions are derived asymptotically for vanishing sheet thickness ε where the skin depth is kept proportional to ε. The condition of order 1 turns out to be the perfect electric conductor boundary condition. The conditions of order 2 appear as generalised Poincaré-Steklov maps between tangential components of the magnetic field and the electric field, and they are of Wentzell type involving second order surface differential operators. Numerical results with finite elements of higher order validate the asymptotic convergence for ε → 0 and the robustness of the equivalent transmission condition of order 2.
dc.language.isoen
dc.publisherSociety for Industrial and Applied Mathematics
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.entime-harmonic Maxwell's equations
dc.subject.enAsymptotic expansions
dc.subject.enimpedance transmission conditions
dc.subject.enthin conducting sheets
dc.title.enEquivalent transmission conditions for the time-harmonic Maxwell equations in 3D for a medium with a highly conductive thin sheet
dc.typeArticle de revue
dc.identifier.doi10.1137/15M1012116
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalSIAM Journal on Applied Mathematics
bordeaux.page1031--1052
bordeaux.volume76
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01260111
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01260111v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Applied%20Mathematics&rft.date=2016&rft.volume=76&rft.issue=3&rft.spage=1031--1052&rft.epage=1031--1052&rft.eissn=0036-1399&rft.issn=0036-1399&rft.au=P%C3%89RON,%20Victor&SCHMIDT,%20Kersten&DURUFL%C3%89,%20Marc&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem