Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorOUHABAZ, El Maati
dc.date.accessioned2024-04-04T03:14:55Z
dc.date.available2024-04-04T03:14:55Z
dc.date.created2015-01-23
dc.date.issued2018-12-31
dc.identifier.issn1664-039X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194108
dc.description.abstractEnGiven a general symmetric elliptic operator $$ L_{a} := \sum_{k,,j=1}^d \p_k (a_{kj} \p_j ) + \sum_{k=1}^d a_k \p_k - \p_k( \overline{a_k} . ) + a_0$$we define the associated Dirichlet-to-Neumann (D-t-N) operator with partial data, i.e., data supported in a part of the boundary. We prove positivity, $L^p$-estimates and domination properties for the semigroup associated with this D-t-N operator. Given $L_a $ and $L_b$ of the previous type with bounded measurable coefficients $a = \{ a_{kj}, \ a_k, a_0 \}$ and $b = \{ b_{kj}, \ b_k, b_0 \}$, we prove that if their partial D-t-N operators (with $a_0$ and $b_0$ replaced by $a_0 -\la$ and $b_0 -\la$) coincide for all $\la$, then the operators $L_a$ and $L_b$, endowed with Dirichlet, mixed or Robin boundary conditions are unitary equivalent. In the case of the Dirichlet boundary conditions, this result was proved recently by Behrndt and Rohleder \cite{BR12} for Lipschitz continuous coefficients. We provide a different proof which works for bounded measurable coefficients and other boundary conditions.
dc.description.sponsorshipAux frontières de l'analyse Harmonique - ANR-12-BS01-0013
dc.language.isoen
dc.publisherEuropean Mathematical Society
dc.title.enA "milder" version of Calderón's inverse problem for anisotropic conductivities and partial data
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
dc.identifier.arxiv1501.07364
bordeaux.journalJournal of Spectral Theory
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01110656
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01110656v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Spectral%20Theory&rft.date=2018-12-31&rft.eissn=1664-039X&rft.issn=1664-039X&rft.au=OUHABAZ,%20El%20Maati&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée