Numerical methods for the bidimensional Maxwell–Bloch equations in nonlinear crystals
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | SAUT, Olivier | |
hal.structure.identifier | Centre d'études scientifiques et techniques d'Aquitaine (CESTA-CEA) [CESTA] | |
dc.contributor.author | BOURGEADE, Antoine | |
dc.date.issued | 2006-04-10 | |
dc.identifier.issn | 0021-9991 | |
dc.description.abstractEn | Two numerical schemes are developed for solutions of the bidimensional Maxwell–Bloch equations in nonlinear optical crystals. The Maxwell–Bloch model was recently extended [C. Besse, B. Bidégaray, A. Bourgeade, P. Degond, O. Saut, A Maxwell–Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP, M2AN Math. Model. Numer. Anal. 38 (2) (2004) 321–344] to treat anisotropic materials like nonlinear crystals. This semi-classical model seems to be adequate to describe the wave–matter interaction of ultrashort pulses in nonlinear crystals [A. Bourgeade, O. Saut, Comparison between the Maxwell–Bloch and two nonlinear maxwell models for ultrashort pulses propagation in nonlinear crystals, submitted (2004)] as it is closer to the physics than most macroscopic models. A bidimensional finite-difference-time-domain scheme, adapted from Yee [IEEE Trans. Antennas Propag. AP-14 (1966) 302–307], was already developed in [O. Saut, Bidimensional study of the Maxwell–Bloch model in a nonlinear crystal, submitted (2004)]. This scheme yields very expensive computations. In this paper, we present two numerical schemes much more efficient with their relative advantages and drawbacks. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Nonlinear optics | |
dc.subject.en | Harmonic generation | |
dc.subject.en | Quantum description of light and matter | |
dc.subject.en | Nonlinear optical crystal | |
dc.subject.en | Numerical schemes | |
dc.title.en | Numerical methods for the bidimensional Maxwell–Bloch equations in nonlinear crystals | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.jcp.2005.09.003 | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Physique [physics]/Physique [physics]/Optique [physics.optics] | |
bordeaux.journal | Journal of Computational Physics | |
bordeaux.page | Issue 2, Pages 823-843 | |
bordeaux.volume | 213 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00131958 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00131958v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2006-04-10&rft.volume=213&rft.spage=Issue%202,%20Pages%20823-843&rft.epage=Issue%202,%20Pages%20823-843&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=SAUT,%20Olivier&BOURGEADE,%20Antoine&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |