Mostrar el registro sencillo del ítem

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMELINAND, Benjamin
dc.date.accessioned2024-04-04T03:13:59Z
dc.date.available2024-04-04T03:13:59Z
dc.date.created2015-03-19
dc.date.issued2015-03
dc.identifier.issn0951-7715
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194001
dc.description.abstractEnIn this paper, we want to understand the Proudman resonance. It is a resonant respond in shallow waters of a water body on a traveling atmospheric disturbance when the speed of the disturbance is close to the typical water wave velocity. We show here that the same kind of resonance exists for landslide tsunamis and we propose a mathematical approach to investigate these phenomena based on the derivation, justification and analysis of relevant asymptotic models. This approach allows us to investigate more complex phenomena that are not dealt with in the physics literature such as the influence of a variable bottom or the generalization of the Proudman resonance in deeper waters. First, we prove a local well-posedness of the water waves equations with a moving bottom and a non constant pressure at the surface taking into account the dependence of small physical parameters and we show that these equations are a Hamiltonian system (which extend the result of Zakharov [33]). Then, we justify some linear asymptotic models in order to study the Proudman resonance and submarine landslide tsunamis; we study the linear water waves equations and dispersion estimates allow us to investigate the amplitude of the sea level. To complete these asymptotic models, we add some numerical simulations.
dc.description.sponsorshipDYnamique des Fluides, Couches Limites, Tourbillons et Interfaces - ANR-13-BS01-0003
dc.language.isoen
dc.publisherIOP Publishing
dc.subject.enquasilinear hyperbolic system
dc.subject.enasymptotic models
dc.subject.enwater waves equations
dc.title.enA mathematical study of meteo and landslide tsunamis : The Proudman resonance
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv1503.07028
bordeaux.journalNonlinearity
bordeaux.volume28
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue11
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01133467
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01133467v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nonlinearity&rft.date=2015-03&rft.volume=28&rft.issue=11&rft.eissn=0951-7715&rft.issn=0951-7715&rft.au=MELINAND,%20Benjamin&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem