Afficher la notice abrégée

hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorGIRAUD, Rémi
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
dc.contributor.authorTA, Vinh-Thong
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPAPADAKIS, Nicolas
dc.date.accessioned2024-04-04T03:13:51Z
dc.date.available2024-04-04T03:13:51Z
dc.date.conference2016-12-04
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193988
dc.description.abstractEnSuperpixel decomposition methods are generally used as a pre-processing step to speed up image processing tasks. They group the pixels of an image into homogeneous regions while trying to respect existing contours. For all state-of-the-art superpixel decomposition methods, a trade-off is made between 1) computational time, 2) adherence to image contours and 3) regularity and compactness of the decomposition. In this paper, we propose a fast method to compute Superpixels with Contour Adherence using Linear Path (SCALP) in an iterative clustering framework. The distance computed when trying to associate a pixel to a superpixel during the clustering is enhanced by considering the linear path to the superpixel barycenter. The proposed framework produces regular and compact superpixels that adhere to the image contours. We provide a detailed evaluation of SCALP on the standard Berkeley Segmentation Dataset. The obtained results outperform state-of-the-art methods in terms of standard superpixel and contour detection metrics.
dc.language.isoen
dc.title.enSCALP: Superpixels with Contour Adherence using Linear Path
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
dc.subject.halInformatique [cs]/Traitement des images
bordeaux.page2374-2379
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleInternational Conference on Pattern Recognition (ICPR'16)
bordeaux.countryMX
bordeaux.conference.cityCancun
bordeaux.peerReviewedoui
hal.identifierhal-01349569
hal.version3
hal.invitednon
hal.proceedingsoui
hal.conference.end2016-12-08
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01349569v3
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=2374-2379&rft.epage=2374-2379&rft.au=GIRAUD,%20R%C3%A9mi&TA,%20Vinh-Thong&PAPADAKIS,%20Nicolas&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée