Algorithmes pour les anneaux finis
dc.contributor.advisor | H. W., Jr Lenstra | |
dc.contributor.advisor | Karim Belabas | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CIOCANEA TEODORESCU, Iuliana | |
dc.contributor.other | Bart De Smit [Président] | |
dc.contributor.other | Lenny Taelman [Rapporteur] | |
dc.contributor.other | Teresa Krick [Rapporteur] | |
dc.contributor.other | Owen Biesel | |
dc.contributor.other | Wilberd L. J. Van der Kallen | |
dc.date.accessioned | 2024-04-04T03:13:26Z | |
dc.date.available | 2024-04-04T03:13:26Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193949 | |
dc.identifier.nnt | 2016BORD0121 | |
dc.description.abstract | Cette thèse s'attache à décrire des algorithmes qui répondent à des questions provenant de la théorie des anneaux et des modules. Nous restreindrons essentiellement notre étude à des algorithmes déterministes, en temps polynomial, ainsi qu'aux anneaux et modules finis. Le premier des principaux résultats de cette thèse concerne le problème de l'isomorphisme entre modules : nous décrivons deux algorithmes distincts qui, étant donnée un anneau fini R et deux R-modules M et N finis, déterminent si M et N sont isomorphes. S'ils le sont, les deux algorithmes exhibent un tel isomorphisme. De plus, nous montrons comment calculer un ensemble de générateurs de taille minimale pour un module donné, et comment construire des couvertures projectives et des enveloppes injectives. Nous décrivons ensuite des tests mettant en évidence le caractère simple, projectif ou injectif d'un module, ainsi qu'un test constructif de l'existence d'un homomorphisme demodules surjectif entre deux modules finis, l'un d'entre eux étant projectif. Par contraste, nous montrons le résultat négatif suivant : le problème consistant à tester l'existence d'un homomorphisme de modules injectif entre deux modules, l'un des deux étant projectif, est NP-complet.La dernière partie de cette thèse concerne le problème de l'approximation du radical de Jacobson d'un anneau fini. Il s'agit de déterminer un idéal bilatère nilpotent tel que l'anneau quotient correspondant soit \presque" semi-simple. La notion de \semi-simplicité approchée" que nous utilisons est la séparabilité. | |
dc.description.abstractEn | In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis concerns the module isomorphism problem: we describe two distinct algorithms that, given a finite ring R and two finite R-modules M and N, determine whether M and N are isomorphic. If they are, the algorithms exhibit such a isomorphism. In addition, we show how to compute a set of generators of minimal cardinality for a given module, and how to construct projective covers and injective hulls. We also describe tests for module simplicity, projectivity, and injectivity, and constructive tests for existence of surjective module homomorphisms between two finite modules, one of which is projective. As a negative result, we show that the problem of testing for existence of injective module homomorphisms between two finite modules, one of which is projective, is NP-complete. The last part of the thesis is concerned with finding a good working approximation of the Jacobson radical of a finite ring, that is, a two-sided nilpotent ideal such that the corresponding quotient ring is \almost" semisimple. The notion we use to approximate semisimplicity is that of separability. | |
dc.language.iso | en | |
dc.subject | Algorithmes déterministes | |
dc.subject | Séparabilité | |
dc.subject | Semi-simplicité | |
dc.subject | Radical de Jacobson | |
dc.subject | Isomorphisme | |
dc.subject | Modules finis | |
dc.subject | Anneaux finis | |
dc.subject.en | Deterministic algorithms | |
dc.subject.en | Separability | |
dc.subject.en | Semisimplicity | |
dc.subject.en | Jacobson radical | |
dc.subject.en | Isomorphism | |
dc.subject.en | Finite modules | |
dc.subject.en | Finite rings | |
dc.title | Algorithmes pour les anneaux finis | |
dc.title.en | Algorithms for finite rings | |
dc.type | Thèses de doctorat | |
dc.subject.hal | Mathématiques [math]/Mathématiques générales [math.GM] | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.type.institution | Université de Bordeaux | |
bordeaux.type.institution | Universiteit Leiden (Leyde, Pays-Bas) | |
bordeaux.ecole.doctorale | École doctorale de mathématiques et informatique (Talence, Gironde ; 1991-....) | |
hal.identifier | tel-01378003 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//tel-01378003v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Algorithmes%20pour%20les%20anneaux%20finis&rft.atitle=Algorithmes%20pour%20les%20anneaux%20finis&rft.au=CIOCANEA%20TEODORESCU,%20Iuliana&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |