Afficher la notice abrégée

dc.contributor.advisorH. W., Jr Lenstra
dc.contributor.advisorKarim Belabas
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCIOCANEA TEODORESCU, Iuliana
dc.contributor.otherBart De Smit [Président]
dc.contributor.otherLenny Taelman [Rapporteur]
dc.contributor.otherTeresa Krick [Rapporteur]
dc.contributor.otherOwen Biesel
dc.contributor.otherWilberd L. J. Van der Kallen
dc.date.accessioned2024-04-04T03:13:26Z
dc.date.available2024-04-04T03:13:26Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193949
dc.identifier.nnt2016BORD0121
dc.description.abstractCette thèse s'attache à décrire des algorithmes qui répondent à des questions provenant de la théorie des anneaux et des modules. Nous restreindrons essentiellement notre étude à des algorithmes déterministes, en temps polynomial, ainsi qu'aux anneaux et modules finis. Le premier des principaux résultats de cette thèse concerne le problème de l'isomorphisme entre modules : nous décrivons deux algorithmes distincts qui, étant donnée un anneau fini R et deux R-modules M et N finis, déterminent si M et N sont isomorphes. S'ils le sont, les deux algorithmes exhibent un tel isomorphisme. De plus, nous montrons comment calculer un ensemble de générateurs de taille minimale pour un module donné, et comment construire des couvertures projectives et des enveloppes injectives. Nous décrivons ensuite des tests mettant en évidence le caractère simple, projectif ou injectif d'un module, ainsi qu'un test constructif de l'existence d'un homomorphisme demodules surjectif entre deux modules finis, l'un d'entre eux étant projectif. Par contraste, nous montrons le résultat négatif suivant : le problème consistant à tester l'existence d'un homomorphisme de modules injectif entre deux modules, l'un des deux étant projectif, est NP-complet.La dernière partie de cette thèse concerne le problème de l'approximation du radical de Jacobson d'un anneau fini. Il s'agit de déterminer un idéal bilatère nilpotent tel que l'anneau quotient correspondant soit \presque" semi-simple. La notion de \semi-simplicité approchée" que nous utilisons est la séparabilité.
dc.description.abstractEnIn this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis concerns the module isomorphism problem: we describe two distinct algorithms that, given a finite ring R and two finite R-modules M and N, determine whether M and N are isomorphic. If they are, the algorithms exhibit such a isomorphism. In addition, we show how to compute a set of generators of minimal cardinality for a given module, and how to construct projective covers and injective hulls. We also describe tests for module simplicity, projectivity, and injectivity, and constructive tests for existence of surjective module homomorphisms between two finite modules, one of which is projective. As a negative result, we show that the problem of testing for existence of injective module homomorphisms between two finite modules, one of which is projective, is NP-complete. The last part of the thesis is concerned with finding a good working approximation of the Jacobson radical of a finite ring, that is, a two-sided nilpotent ideal such that the corresponding quotient ring is \almost" semisimple. The notion we use to approximate semisimplicity is that of separability.
dc.language.isoen
dc.subjectAlgorithmes déterministes
dc.subjectSéparabilité
dc.subjectSemi-simplicité
dc.subjectRadical de Jacobson
dc.subjectIsomorphisme
dc.subjectModules finis
dc.subjectAnneaux finis
dc.subject.enDeterministic algorithms
dc.subject.enSeparability
dc.subject.enSemisimplicity
dc.subject.enJacobson radical
dc.subject.enIsomorphism
dc.subject.enFinite modules
dc.subject.enFinite rings
dc.titleAlgorithmes pour les anneaux finis
dc.title.enAlgorithms for finite rings
dc.typeThèses de doctorat
dc.subject.halMathématiques [math]/Mathématiques générales [math.GM]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionUniversité de Bordeaux
bordeaux.type.institutionUniversiteit Leiden (Leyde, Pays-Bas)
bordeaux.ecole.doctoraleÉcole doctorale de mathématiques et informatique (Talence, Gironde ; 1991-....)
hal.identifiertel-01378003
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//tel-01378003v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Algorithmes%20pour%20les%20anneaux%20finis&rft.atitle=Algorithmes%20pour%20les%20anneaux%20finis&rft.au=CIOCANEA%20TEODORESCU,%20Iuliana&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée