Supervised and unsupervised classification using mixture models
hal.structure.identifier | Modelling and Inference of Complex and Structured Stochastic Systems [MISTIS ] | |
dc.contributor.author | GIRARD, Stéphane | |
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Ecole Nationale Supérieure de Cognitique [ENSC] | |
dc.contributor.author | SARACCO, Jerome | |
dc.contributor.editor | Didier Fraix-Burnet | |
dc.contributor.editor | Stéphane Girard | |
dc.date.accessioned | 2024-04-04T03:12:13Z | |
dc.date.available | 2024-04-04T03:12:13Z | |
dc.date.issued | 2016-05-17 | |
dc.identifier.isbn | 978-2-7598-9001-9 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193846 | |
dc.description.abstractEn | This chapter is dedicated to model-based supervised and unsupervised classification.Probability distributions are defined over possible labels as well as over the observations given the labels.To this end, the basic tools are the mixture models. This methodology yields a posterior distribution over the labels given the observations which allows to quantify the uncertainty of the classification. The role of Gaussian mixture models is emphasized leading to Linear Discriminant Analysis and Quadratic Discriminant Analysis methods. Some links with Fisher Discriminant Analysis and logistic regression are also established.The Expectation-Maximization algorithm is introduced and compared to the $K$-means clustering method.The methods are illustrated both on simulated datasets as well as on real datasets using the R software. | |
dc.language.iso | en | |
dc.publisher | EDP Sciences | |
dc.source.title | Statistics for Astrophysics: Clustering and Classification | |
dc.title.en | Supervised and unsupervised classification using mixture models | |
dc.type | Chapitre d'ouvrage | |
dc.subject.hal | Statistiques [stat] | |
bordeaux.page | 69-90 | |
bordeaux.volume | 77 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.title.proceeding | Statistics for Astrophysics: Clustering and Classification | |
hal.identifier | hal-01417514 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01417514v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Statistics%20for%20Astrophysics:%20Clustering%20and%20Classification&rft.date=2016-05-17&rft.volume=77&rft.spage=69-90&rft.epage=69-90&rft.au=GIRARD,%20St%C3%A9phane&SARACCO,%20Jerome&rft.isbn=978-2-7598-9001-9&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |