ON THE ABSOLUTE CONTINUOUS SPECTRUM OF DISCRETE OPERATORS
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | GOLENIA, Sylvain | |
dc.date.accessioned | 2024-04-04T03:10:47Z | |
dc.date.available | 2024-04-04T03:10:47Z | |
dc.date.issued | 2016-11-07 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193714 | |
dc.description.abstractEn | This aim of this course is to give an overview to the study of the continuous spectrum of bounded self-adjoint operators and especially those coming from the setting of graphs. For the sake of completeness, a short course in spectral theory is given with proofs. The continuous and Borelian functional calculi are also developed. | |
dc.description.sponsorship | Géométrie Spectrale, Graphes et Semiclassique - ANR-13-BS01-0007 | |
dc.language.iso | en | |
dc.subject.en | commutator theory | |
dc.subject.en | Mourre estimate | |
dc.subject.en | a.c. spectrum | |
dc.subject.en | discrete laplacian | |
dc.subject.en | graphs | |
dc.subject.en | functional calculi | |
dc.subject.en | discrete Dirac operator | |
dc.title.en | ON THE ABSOLUTE CONTINUOUS SPECTRUM OF DISCRETE OPERATORS | |
dc.subject.hal | Mathématiques [math]/Théorie spectrale [math.SP] | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
bordeaux.page | 56 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.type.institution | CIMPA | |
bordeaux.country | TN | |
hal.identifier | cel-01484506 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//cel-01484506v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2016-11-07&rft.spage=56&rft.epage=56&rft.au=GOLENIA,%20Sylvain& |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |