On a two-valued sequence and related continued fractions in power series fields
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Lithe and fast algorithmic number theory [LFANT] | |
dc.contributor.author | ALLOMBERT, Bill | |
hal.structure.identifier | Arithmetic and Computing [ARIC] | |
hal.structure.identifier | Laboratoire de l'Informatique du Parallélisme [LIP] | |
dc.contributor.author | BRISEBARRE, Nicolas | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | LASJAUNIAS, Alain | |
dc.date.accessioned | 2024-04-04T03:10:43Z | |
dc.date.available | 2024-04-04T03:10:43Z | |
dc.date.created | 2017-02-20 | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1382-4090 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193709 | |
dc.description.abstractEn | We explicitly describe a noteworthy transcendental continued fraction in the field of power series over Q, having irrationality measure equal to 3. This continued fraction is a generating function of a particular sequence in the set {1, 2}. The origin of this sequence, whose study was initiated in a recent paper, is to be found in another continued fraction, in the field of power series over $\mathbb{F}_3$, which satisfies a simple algebraic equation of degree 4, introduced thirty years ago by D. Robbins. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | power series over a finite field | |
dc.subject.en | finite alphabet | |
dc.subject.en | finite automata | |
dc.subject.en | formal power series | |
dc.subject.en | continued fractions | |
dc.subject.en | words | |
dc.subject.en | automatic sequences | |
dc.title.en | On a two-valued sequence and related continued fractions in power series fields | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s11139-017-9892-7 | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.identifier.arxiv | 1607.07235 | |
bordeaux.journal | Ramanujan Journal | |
bordeaux.page | 859-871 | |
bordeaux.volume | 45 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 3 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01348576 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01348576v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Ramanujan%20Journal&rft.date=2018&rft.volume=45&rft.issue=3&rft.spage=859-871&rft.epage=859-871&rft.eissn=1382-4090&rft.issn=1382-4090&rft.au=ALLOMBERT,%20Bill&BRISEBARRE,%20Nicolas&LASJAUNIAS,%20Alain&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |