Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBIGOT, Jérémie
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDELEDALLE, Charles-Alban
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorFÉRAL, Delphine
dc.date.accessioned2024-04-04T03:10:17Z
dc.date.available2024-04-04T03:10:17Z
dc.date.created2017-04-22
dc.date.issued2017-11
dc.identifier.issn1532-4435
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193678
dc.description.abstractEnWe consider the problem of estimating a low-rank signal matrix from noisy measurements under the assumption that the distribution of the data matrix belongs to an exponential family. In this setting, we derive generalized Stein's unbiased risk estimation (SURE) formulas that hold for any spectral estimators which shrink or threshold the singular values of the data matrix. This leads to new data-driven spectral estimators, whose optimality is discussed using tools from random matrix theory and through numerical experiments. Under the spiked population model and in the asymptotic setting where the dimensions of the data matrix are let going to infinity, some theoretical properties of our approach are compared to recent results on asymptotically optimal shrinking rules for Gaussian noise. It also leads to new procedures for singular values shrinkage in finite-dimensional matrix denoising for Gamma-distributed and Poisson-distributed measurements.
dc.language.isoen
dc.publisherMicrotome Publishing
dc.subject.enmatrix denoising
dc.subject.ensingular value decomposition
dc.subject.enlow-rank model
dc.subject.enspectral estimator
dc.subject.enStein's unbiased risk estimate
dc.subject.enrandom matrix theory
dc.subject.enexponential family
dc.subject.enoptimal shrinkage rule
dc.subject.endegrees of freedom
dc.title.enGeneralized SURE for optimal shrinkage of singular values in low-rank matrix denoising
dc.typeArticle de revue
dc.subject.halStatistiques [stat]
dc.subject.halMathématiques [math]
dc.identifier.arxiv1605.07412
bordeaux.journalJournal of Machine Learning Research
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01323285
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01323285v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Machine%20Learning%20Research&rft.date=2017-11&rft.eissn=1532-4435&rft.issn=1532-4435&rft.au=BIGOT,%20J%C3%A9r%C3%A9mie&DELEDALLE,%20Charles-Alban&F%C3%89RAL,%20Delphine&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée