Mostrar el registro sencillo del ítem
Evaluation Framework of Superpixel Methods with a Global Regularity Measure
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | GIRAUD, Rémi | |
hal.structure.identifier | Institut Polytechnique de Bordeaux [Bordeaux INP] | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | TA, Vinh-Thong | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PAPADAKIS, Nicolas | |
dc.date.accessioned | 2024-04-04T03:10:00Z | |
dc.date.available | 2024-04-04T03:10:00Z | |
dc.date.issued | 2017-07-06 | |
dc.identifier.issn | 1017-9909 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193656 | |
dc.description.abstractEn | In the superpixel literature, the comparison of state-of-the-art methods can be biased by the non-robustness of some metrics to decomposition aspects, such as the superpixel scale. Moreover, most recent decomposition methods allow to set a shape regularity parameter, which can have a substantial impact on the measured performances. In this paper, we introduce an evaluation framework, that aims to unify the comparison process of superpixel methods. We investigate the limitations of existing metrics, and propose to evaluate each of the three core decomposition aspects: color homogeneity, respect of image objects and shape regularity. To measure the regularity aspect, we propose a new global regularity measure (GR), which addresses the non-robustness of state-of-the-art metrics. We evaluate recent superpixel methods with these criteria, at several superpixel scales and regularity levels. The proposed framework reduces the bias in the comparison process of state-of-the-art superpixel methods. Finally, we demonstrate that the proposed GR measure is correlated with the performances of various applications. | |
dc.description.sponsorship | Generalized Optimal Transport Models for Image processing - ANR-16-CE33-0010 | |
dc.language.iso | en | |
dc.publisher | SPIE and IS&T | |
dc.title.en | Evaluation Framework of Superpixel Methods with a Global Regularity Measure | |
dc.type | Article de revue | |
dc.subject.hal | Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV] | |
dc.subject.hal | Informatique [cs]/Traitement des images | |
bordeaux.journal | Journal of Electronic Imaging | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01519635 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01519635v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Electronic%20Imaging&rft.date=2017-07-06&rft.eissn=1017-9909&rft.issn=1017-9909&rft.au=GIRAUD,%20R%C3%A9mi&TA,%20Vinh-Thong&PAPADAKIS,%20Nicolas&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |