Mostrar el registro sencillo del ítem

hal.structure.identifierUniversity of California [San Diego] [UC San Diego]
dc.contributor.authorPARAMESWARAN, Shibin
dc.contributor.authorENMING, Luo
hal.structure.identifierUniversity of California [San Diego] [UC San Diego]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDELEDALLE, Charles
hal.structure.identifierUniversity of California [San Diego] [UC San Diego]
dc.contributor.authorNGUYEN, Truong
dc.date.accessioned2024-04-04T03:09:21Z
dc.date.available2024-04-04T03:09:21Z
dc.date.issued2017-08-01
dc.date.conference2017-07-22
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193597
dc.description.abstractEnWe introduce a new external denoising algorithm that utilizes pre-learned transformations to accelerate filter calculations during runtime. The proposed fast external denoising (FED) algorithm shares characteristics of the powerful Targeted Image Denoising (TID) and Expected Patch Log-Likelihood (EPLL) algorithms. By moving computationally demanding steps to an offline learning stage, the proposed approach aims to find a balance between processing speed and obtaining high quality denoising estimates. We evaluate FED on three datasets with targeted databases (text, face and license plates) and also on a set of generic images without a targeted database. We show that, like TID, the proposed approach is extremely effective when the transformations are learned using a targeted database. We also demonstrate that FED converges to competitive solutions faster than EPLL and is orders of magnitude faster than TID while providing comparable denoising performance.
dc.language.isoen
dc.source.titleIEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2017, pp. 29-37
dc.title.enFast External Denoising Using Pre-Learned Transformations
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Traitement des images
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleIEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
bordeaux.countryUS
bordeaux.title.proceedingIEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2017, pp. 29-37
bordeaux.conference.cityHonolulu
bordeaux.peerReviewedoui
hal.identifierhal-01577541
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2017-07-25
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01577541v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)%20Workshops,%202017,%20pp.%2029-37&rft.date=2017-08-01&rft.au=PARAMESWARAN,%20Shibin&ENMING,%20Luo&DELEDALLE,%20Charles&NGUYEN,%20Truong&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem