Afficher la notice abrégée

hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
hal.structure.identifierUniversité de Pau et des Pays de l'Adour [UPPA]
dc.contributor.authorBARUCQ, Hélène
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDURUFLÉ, Marc
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
hal.structure.identifierUniversité de Pau et des Pays de l'Adour [UPPA]
dc.contributor.authorN'DIAYE, Mamadou
dc.date.accessioned2024-04-04T03:08:24Z
dc.date.available2024-04-04T03:08:24Z
dc.date.created2017-03
dc.date.issued2018
dc.identifier.issn0749-159X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193526
dc.description.abstractEnIn this paper we address the problem of constructing high-order implicit time schemes for wave equations. We consider two classes of one-step A-stable schemes adapted to linear Ordinary Differential Equation (ODE). The first class, which is not dissipative is based upon the diagonal Padé approximant of exponential function. In this class, the obtained schemes have the same stability function as Gauss Runge-Kutta (Gauss RK) schemes. They have the advantage to involve solution of smaller linear system at each time step compared to Gauss RK. The second class of schemes are constructed such that they require the inversion of a unique linear system several times at each time step like the Singly Diagonally Runge-Kutta (SDIRK) schemes. While the first class of schemes is constructed for an arbitrary order of accuracy, the second class schemes is given up to order 12. The performance assessment we provide shows a very good level of accuracy with very reduced computational costs for both class of schemes. But diagonal Padé schemes seem to be more accurate and more robust.
dc.language.isoen
dc.publisherWiley
dc.title.enHigh-order Padé and Singly Diagonally Runge-Kutta schemes for linear ODEs, application to wave propagation problems
dc.typeArticle de revue
dc.identifier.doi10.1002/num.22228
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalNumerical Methods for Partial Differential Equations
bordeaux.page760-798
bordeaux.volume34
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01511089
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01511089v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Numerical%20Methods%20for%20Partial%20Differential%20Equations&rft.date=2018&rft.volume=34&rft.spage=760-798&rft.epage=760-798&rft.eissn=0749-159X&rft.issn=0749-159X&rft.au=BARUCQ,%20H%C3%A9l%C3%A8ne&DURUFL%C3%89,%20Marc&N'DIAYE,%20Mamadou&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée