A conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation
hal.structure.identifier | King‘s College London | |
dc.contributor.author | CORRADO, Cesare | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
dc.contributor.author | ZEMZEMI, Nejib | |
dc.date.accessioned | 2024-04-04T03:07:53Z | |
dc.date.available | 2024-04-04T03:07:53Z | |
dc.date.issued | 2018-01-01 | |
dc.identifier.issn | 1361-8415 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193483 | |
dc.description.abstractEn | Computational models of heart electrophysiology achieved a considerable interest in the medical community as they represent a novel framework for the study of the mechanisms underpinning heart pathologies. The high demand of computational resources and the long computational time required to evaluate the model solution hamper the use of detailed computational models in clinical applications. In this paper, we present a multi-front eikonal algorithm that adapts the conduction velocity (CV) to the activation frequency of the tissue substrate. We then couple the eikonal new algorithm with the Mitchell-Schaeffer (MS) ionic model to determine the tissue electrical state. Compared to the standard eikonal model, this model introduces three novelties: first, it evaluates the local value of the transmembrane potential and of the ionic variable solving an ionic model; second, it computes the action potential duration (APD) and the diastolic interval (DI) from the solution of the MS model and uses them to determine if the tissue is locally re-excitable; third, it adapts the CV to the underpinning electrophysiological state through an analytical expression of the CV restitution and the computed local DI. We conduct series of simulations on a 3D tissue slab and on a realistic heart geometry and compare the solutions with those obtained solving the monodomain equation. Our results show that the new model is significantly more accurate than the standard eikonal model. The proposed model enables the numerical simulation of the heart electrophys-iology on a clinical time scale and thus constitutes a viable model candidate for computer-guided radio-frequency ablation. | |
dc.description.sponsorship | Agency for mathematics in interaction with enterprise and society - ANR-10-LABX-0002 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Algorithm | |
dc.subject.en | Conduction | |
dc.subject.en | Cardiac Electrophysiology | |
dc.subject.en | Multi-front eikonal model | |
dc.subject.en | Dijkstra | |
dc.subject.en | Clinical time scale | |
dc.subject.en | Velocity | |
dc.subject.en | Mitchell And Schaeffer model | |
dc.title.en | A conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.media.2017.11.002 | |
dc.subject.hal | Informatique [cs]/Modélisation et simulation | |
bordeaux.journal | Medical Image Analysis | |
bordeaux.page | 186-197 | |
bordeaux.volume | 43 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01655410 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01655410v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Medical%20Image%20Analysis&rft.date=2018-01-01&rft.volume=43&rft.spage=186-197&rft.epage=186-197&rft.eissn=1361-8415&rft.issn=1361-8415&rft.au=CORRADO,%20Cesare&ZEMZEMI,%20Nejib&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |