Mostrar el registro sencillo del ítem
An introduction to Wishart matrix moments
hal.structure.identifier | Commonwealth Scientific and Industrial Research Organisation [Australia] [CSIRO] | |
dc.contributor.author | BISHOP, Adrian N. | |
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
dc.contributor.author | DEL MORAL, Pierre | |
hal.structure.identifier | École normale supérieure de Lyon [ENS de Lyon] | |
dc.contributor.author | NICLAS, Angèle | |
dc.date.accessioned | 2024-04-04T03:07:38Z | |
dc.date.available | 2024-04-04T03:07:38Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193461 | |
dc.description.abstractEn | This article provides a comprehensive, rigorous, and self-contained introduction to the analysis of Wishart matrix moments. This article may act as an introduction to some aspects of random matrix theory, or as a self-contained exposition of Wishart matrix moments. Random matrix theory plays a central role in nuclear and statistical physics, computational mathematics and engineering sciences, including data assimilation, signal processing, combinatorial optimization, compressed sensing, econometrics and mathematical finance, among numerous others. The mathematical foundations of the theory of random matrices lies at the intersection of combinatorics, non-commutative algebra, geometry, multivariate functional and spectral analysis, and of course statistics and probability theory. As a result, most of the classical topics in random matrix theory are technical, and mathematically difficult to penetrate for non-experts and regular users and practitioners. The technical aim of this article is to review and extend some important results in random matrix theory in the specific context of real random Wishart matrices. This special class of Gaussian-type sample covariance matrix plays an important role in multivariate analysis and in statistical theory. We derive non-asymptotic formulae for the full matrix moments of real valued Wishart random matrices. As a corollary, we derive and extend a number of spectral and trace-type results for the case of non-isotropic Wishart random matrices. We also derive the full matrix moment analogues of some classic spectral and trace-type moment results. For example, we derive semi-circle and Marchencko-Pastur-type laws in the non-isotropic and full matrix cases. Laplace matrix transforms and matrix moment estimates are also studied, along with new spectral and trace concentration-type inequalities. | |
dc.language.iso | en | |
dc.title.en | An introduction to Wishart matrix moments | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Probabilités [math.PR] | |
dc.subject.hal | Mathématiques [math]/Combinatoire [math.CO] | |
dc.identifier.arxiv | 1710.10864 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01662575 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01662575v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BISHOP,%20Adrian%20N.&DEL%20MORAL,%20Pierre&NICLAS,%20Ang%C3%A8le&rft.genre=preprint |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |