Mostrar el registro sencillo del ítem
Nonvanishing of Central Values of $L$-functions of Newforms in $S_2 (\Gamma_0 (dp^2))$ Twisted by Quadratic Characters
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | LE FOURN, Samuel | |
dc.date.accessioned | 2024-04-04T03:07:26Z | |
dc.date.available | 2024-04-04T03:07:26Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0008-4395 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193441 | |
dc.description.abstractEn | We prove that for d ∈ {2, 3, 5, 7, 13} and K a quadratic (or rational) eld of discriminant D and Dirichlet character χ, if a prime p is large enough compared to D, there is a newform f ∈ S2(Γ0(dp 2)) with sign (+1) with respect to the Atkin-Lehner involution w p 2 such that L(f ⊗ χ, 1) = 0. This result is obtained through an estimate of a weighted sum of twists of L-functions which generalises a result of Ellenberg. It relies on the approximate functional equation for the L-functions L(f ⊗ χ, ·) and a Petersson trace formula restricted to Atkin-Lehner eigenspaces. An application of this nonvanishing theorem will be given in terms of existence of rank zero quotients of some twisted jacobians, which generalises a result of Darmon and Merel. Keywords. Nonvanishing of L-functions of modular forms, Petersson trace formula, rank zero quotients of jacobians. MSC201 11F67 and 14J15. | |
dc.language.iso | en | |
dc.publisher | Cambridge University Press | |
dc.title.en | Nonvanishing of Central Values of $L$-functions of Newforms in $S_2 (\Gamma_0 (dp^2))$ Twisted by Quadratic Characters | |
dc.type | Article de revue | |
dc.identifier.doi | 10.4153/CMB-2016-085-6 | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
bordeaux.journal | Canadian Mathematical Bulletin | |
bordeaux.page | 329 - 349 | |
bordeaux.volume | 60 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01668070 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01668070v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Canadian%20Mathematical%20Bulletin&rft.date=2017&rft.volume=60&rft.issue=2&rft.spage=329%20-%20349&rft.epage=329%20-%20349&rft.eissn=0008-4395&rft.issn=0008-4395&rft.au=LE%20FOURN,%20Samuel&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |