Maximal regularity for the damped wave equation
| hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
| dc.contributor.author | ACHACHE, Mahdi | |
| dc.date.accessioned | 2024-04-04T03:06:43Z | |
| dc.date.available | 2024-04-04T03:06:43Z | |
| dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193361 | |
| dc.description.abstractEn | We consider the problem of maximal regularity for non-autonomous Cauchy problems ¨ u(t) + B(t) ˙ u(t) + A(t)u(t) = f (t) (t ∈ [0, τ ]), u(0) = u 0 , ˙ u(0) = u 1. Here, the time dependent operator A(t) is bounded from V to V ′ and B(t) is associated with a family of sesquilinear forms with domain V. We prove maximal L p-regularity results and other regularity properties for the solutions of the previous problems under minimal regularity assumptions on the operators. | |
| dc.language.iso | en | |
| dc.subject.en | Damped wave equation | |
| dc.subject.en | maximal regularity | |
| dc.subject.en | non-autonomous | |
| dc.subject.en | evolution equations | |
| dc.subject.en | Mathematics | |
| dc.title.en | Maximal regularity for the damped wave equation | |
| dc.type | Document de travail - Pré-publication | |
| dc.subject.hal | Mathématiques [math] | |
| dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
| bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
| bordeaux.institution | Université de Bordeaux | |
| bordeaux.institution | Bordeaux INP | |
| bordeaux.institution | CNRS | |
| hal.identifier | hal-01719547 | |
| hal.version | 1 | |
| hal.origin.link | https://hal.archives-ouvertes.fr//hal-01719547v1 | |
| bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ACHACHE,%20Mahdi&rft.genre=preprint |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||