Afficher la notice abrégée

hal.structure.identifierBureau de Recherches Géologiques et Minières [BRGM]
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorARPAIA, Luca
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorRICCHIUTO, Mario
dc.date.accessioned2024-04-04T03:06:37Z
dc.date.available2024-04-04T03:06:37Z
dc.date.issued2018-06
dc.date.conference2018-06-11
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193350
dc.description.abstractEnWe consider the numerical approximation of the Shallow Water Equations (SWEs) in covariant curvilinear coordinates, in view of application to large scale hydrostatic wave phenomena, such as the propagation of tsunami waves. To provide enhanced resolution of the propagating fronts we consider adaptive discrete approximations on moving trian-gulations of the sphere. To this end, we restate all Arbitrary Lagrangian Eulerian (ALE) transport formulas, as well as the volume transformation laws, in generalized curvilin-ear coordinates. Using these results, the SWEs can be written in a framework in which points move arbitrarily in a curvilinear reference frame. We then discuss the implementation of a multidimensional upwind scheme known as Residual Distribution (RD) in order to discretize the resulting ALE Shallow Water equations on the sphere. At the discrete level one must consider the preservation of time accuracy, non-linear stability but also the preservation of important physical steady states on moving meshes. A naif extension of fixed grid methods may lead to spoil the above properties and to the rise of numerical instabilities. For this reason classical properties as the Discrete Geometric Conservation Law and the C-property are reformulated in the more general context of moving curvi-linear coordinates. The proposed RD method is tested on standard benchmarks for the SWEs on the sphere and it is compared to a classical Finite Volume method, both in the fixed grid case and in the ALE moving mesh case. Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes.
dc.language.isoen
dc.subject.enArbitrary Lagrangian Eulerian framework
dc.subject.enShallow Water Equations
dc.subject.enPDEs on the sphere
dc.subject.enResidual Distribution method
dc.title.enA Residual Distribution method for the Shallow Water equations in ALE framework on the sphere
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]
dc.subject.halInformatique [cs]/Modélisation et simulation
bordeaux.page165-174
bordeaux.volume359
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleECCM-ECFD 2018 - 6th European Conference on Computational Mechanics; 7th European Conference on Computational Fluid Dynamics
bordeaux.countryGB
bordeaux.conference.cityGlasgow
bordeaux.peerReviewedoui
hal.identifierhal-01736137
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2018-06-15
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01736137v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2018-06&rft.volume=359&rft.spage=165-174&rft.epage=165-174&rft.au=ARPAIA,%20Luca&RICCHIUTO,%20Mario&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée