Large permutation invariant random matrices are asymptotically free over the diagonal
hal.structure.identifier | Department of Mathematics [Univ California Davis] [MATH - UC Davis] | |
dc.contributor.author | AU, Benson | |
hal.structure.identifier | Institut de Mathématiques de Toulouse UMR5219 [IMT] | |
dc.contributor.author | CÉBRON, Guillaume | |
hal.structure.identifier | University College Dublin [Dublin] [UCD] | |
dc.contributor.author | DAHLQVIST, Antoine | |
hal.structure.identifier | Department of Mathematics [Imperial College London] | |
dc.contributor.author | GABRIEL, Franck | |
hal.structure.identifier | Centre National de la Recherche Scientifique [CNRS] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MALE, Camille | |
dc.date | 2020 | |
dc.date.accessioned | 2024-04-04T03:05:36Z | |
dc.date.available | 2024-04-04T03:05:36Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0091-1798 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193260 | |
dc.description.abstractEn | We prove that independent families of permutation invariant random matrices are asymptotically free over the diagonal, both in probability and in expectation, under a uniform boundedness assumption on the operator norm. We can relax the operator norm assumption to an estimate on sums associated to graphs of matrices, further extending the range of applications (for example, to Wigner matrices with exploding moments and so the sparse regime of the Erdős-Rényi model). The result still holds even if the matrices are multiplied entrywise by bounded random variables (for example, as in the case of matrices with a variance profile and percolation models). | |
dc.language.iso | en | |
dc.publisher | Institute of Mathematical Statistics | |
dc.title.en | Large permutation invariant random matrices are asymptotically free over the diagonal | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Probabilités [math.PR] | |
dc.subject.hal | Mathématiques [math]/Algèbres d'opérateurs [math.OA] | |
dc.identifier.arxiv | 1805.07045 | |
bordeaux.journal | Annals of Probability | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01824543 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01824543v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annals%20of%20Probability&rft.date=2020&rft.eissn=0091-1798&rft.issn=0091-1798&rft.au=AU,%20Benson&C%C3%89BRON,%20Guillaume&DAHLQVIST,%20Antoine&GABRIEL,%20Franck&MALE,%20Camille&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |