Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBACHELOT, Alain
dc.date.accessioned2024-04-04T03:05:33Z
dc.date.available2024-04-04T03:05:33Z
dc.date.issued2019
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193257
dc.description.abstractEnWe investigate the propagation of the scalar waves in the FLRW universes beginning with a Big Bang and ending with a Big Crunch, a Big Rip, a Big Brake, or a Sudden Singularity. We obtain the sharp description of the asymptotics for the solutions of the linear Klein–Gordon equation, and similar results for the semilinear equation with a subcritical exponent. We prove that the number of cosmological particle creation is finite under general assumptions on the initial Big Bang and the final Big Crunch or Big Brake.
dc.language.isoen
dc.subject.enbig crunch
dc.subject.enbig bang
dc.subject.enKlein-Gordon equation: solution
dc.subject.enRobertson-Walker
dc.subject.enpropagation
dc.subject.ensingularity
dc.subject.enbig rip
dc.subject.enasymptotic behavior
dc.title.enWave asymptotics at a cosmological time-singularity: classical and quantum scalar fields
dc.typeArticle de revue
dc.identifier.doi10.1007/s00220-019-03356-0
dc.subject.halPhysique [physics]/Physique mathématique [math-ph]
dc.identifier.arxiv1806.01543
bordeaux.journalCommun.Math.Phys
bordeaux.page973-1020
bordeaux.volume369
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01827923
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01827923v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Commun.Math.Phys&rft.date=2019&rft.volume=369&rft.issue=3&rft.spage=973-1020&rft.epage=973-1020&rft.au=BACHELOT,%20Alain&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée