From Heisenberg uniqueness pairs to properties of the Helmholtz and Laplace equations
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | FERNANDEZ-BERTOLIN, Aingeru | |
hal.structure.identifier | Universität Wien = University of Vienna | |
dc.contributor.author | GRÖCHENIG, Karlheinz | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | JAMING, Philippe | |
dc.date.accessioned | 2024-04-04T03:05:32Z | |
dc.date.available | 2024-04-04T03:05:32Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193255 | |
dc.description.abstractEn | The aim of this paper is to establish uniqueness properties of solutions of the Helmholtz and Laplace equations. In particular, we show that if two solutions of such equations on a domain of R d agree on two intersecting d − 1-dimensional submanifolds in generic position, then they agree everywhere. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Harmonic functions | |
dc.subject.en | Nodal set | |
dc.subject.en | Helmholtz–Laplace equation | |
dc.subject.en | Unique continuation | |
dc.subject.en | Heisenberg uniqueness pair | |
dc.subject.en | Schwarz reflection principle | |
dc.title.en | From Heisenberg uniqueness pairs to properties of the Helmholtz and Laplace equations | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.jmaa.2018.09.008 | |
dc.subject.hal | Mathématiques [math]/Analyse classique [math.CA] | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
dc.subject.hal | Mathématiques [math]/Variables complexes [math.CV] | |
dc.identifier.arxiv | 1711.05520 | |
bordeaux.journal | Journal of Mathematical Analysis and Applications | |
bordeaux.page | 202–219 | |
bordeaux.volume | 469 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01634903 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01634903v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Mathematical%20Analysis%20and%20Applications&rft.date=2019&rft.volume=469&rft.issue=1&rft.spage=202%E2%80%93219&rft.epage=202%E2%80%93219&rft.eissn=0022-247X&rft.issn=0022-247X&rft.au=FERNANDEZ-BERTOLIN,%20Aingeru&GR%C3%96CHENIG,%20Karlheinz&JAMING,%20Philippe&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |