Mostrar el registro sencillo del ítem

hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCOHEN, Henri
dc.contributor.editorJohannes Blümlein
dc.contributor.editorCarsten Schneider
dc.contributor.editorPeter Paule
dc.date.accessioned2024-04-04T03:05:07Z
dc.date.available2024-04-04T03:05:07Z
dc.date.issued2019
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193216
dc.description.abstractEnWe begin by explaining how to compute Fourier expansions at all cusps of any modular form of integral or half-integral weight thanks to a theorem of Borisov-Gunnells and explicit expansions of Eisenstein series at all cusps. Using this, we then give a number of methods for computing arbitrary Petersson products. All this is available in the current release of the Pari/GP package.
dc.language.isoen
dc.publisherSpringer
dc.source.titleElliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory
dc.subject.enPetersson products
dc.subject.enModular forms
dc.title.enExpansions at Cusps and Petersson Products in Pari/GP
dc.typeChapitre d'ouvrage
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1809.10908
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.title.proceedingElliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory
hal.identifierhal-01883070
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01883070v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Elliptic%20Integrals,%20Elliptic%20Functions%20and%20Modular%20Forms%20in%20Quantum%20Field%20Theory&rft.date=2019&rft.au=COHEN,%20Henri&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem