Scheduling series-parallel task graphs to minimize peak memory
hal.structure.identifier | Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA] | |
dc.contributor.author | KAYAASLAN, Enver | |
hal.structure.identifier | Reformulations based algorithms for Combinatorial Optimization [Realopt] | |
dc.contributor.author | LAMBERT, Thomas | |
hal.structure.identifier | Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA] | |
dc.contributor.author | MARCHAL, Loris | |
hal.structure.identifier | Optimisation des ressources : modèles, algorithmes et ordonnancement [ROMA] | |
dc.contributor.author | UÇAR, Bora | |
dc.date.accessioned | 2024-04-04T03:04:56Z | |
dc.date.available | 2024-04-04T03:04:56Z | |
dc.date.issued | 2018-01 | |
dc.identifier.issn | 1879-2294 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193200 | |
dc.description.abstractEn | We consider a variant of the well-known, NP-complete problem of minimum cut linear arrangement for directed acyclic graphs. In this variant, we are given a directed acyclic graph and we are asked to find a topological ordering such that the maximum number of cut edges at any point in this ordering is minimum. In our variant, the vertices and edges have weights, and the aim is to minimize the maximum weight of cut edges in addition to the weight of the last vertex before the cut. There is a known, polynomial time algorithm [Liu, SIAM J. Algebra. Discr., 1987] for the cases where the input graph is a rooted tree. We focus on the instances where the input graph is a directed series-parallel graph, and propose a polynomial time algorithm, thus expanding the class of graphs for which a polynomial time algorithm is known. Directed acyclic graphs are used to model scientific applications where the vertices correspond to the tasks of a given application and the edges represent the dependencies between the tasks. In such models, the problem we address reads as minimizing the peak memory requirement in an execution of the application. Our work, combined with Liu's work on rooted trees addresses this practical problem in two important classes of applications. | |
dc.description.sponsorship | Solveurs pour architectures hétérogènes utilisant des supports d'exécution - ANR-13-MONU-0007 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Peak memory minimization | |
dc.subject.en | Series-parallel graphs | |
dc.subject.en | Scheduling | |
dc.title.en | Scheduling series-parallel task graphs to minimize peak memory | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.tcs.2017.09.037 | |
dc.subject.hal | Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC] | |
bordeaux.journal | Theoretical Computer Science | |
bordeaux.page | 1-23 | |
bordeaux.volume | 707 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01891937 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01891937v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Theoretical%20Computer%20Science&rft.date=2018-01&rft.volume=707&rft.spage=1-23&rft.epage=1-23&rft.eissn=1879-2294&rft.issn=1879-2294&rft.au=KAYAASLAN,%20Enver&LAMBERT,%20Thomas&MARCHAL,%20Loris&U%C3%87AR,%20Bora&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |