Exponential fields and Conway's omega-map
hal.structure.identifier | University of Pisa [Italy] = Università di Pisa [Italia] = Université de Pise [Italie] [UniPi] | |
dc.contributor.author | BERARDUCCI, Alessandro | |
hal.structure.identifier | Faculty of Mathematics and Computer Science [Konstanz] | |
dc.contributor.author | KUHLMANN, Salma | |
hal.structure.identifier | School of Mathematics [Leeds] | |
dc.contributor.author | MANTOVA, Vincenzo | |
hal.structure.identifier | Équipe Géométrie | |
dc.contributor.author | MATUSINSKI, Mickael | |
dc.date.accessioned | 2024-04-04T03:04:33Z | |
dc.date.available | 2024-04-04T03:04:33Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193163 | |
dc.description.abstractEn | Inspired by Conway's surreal numbers, we study real closed fields whose value group is isomorphic to the additive reduct of the field. We call such fields omega-fields and we prove that any omega-field of bounded Hahn series with real coefficients admits an exponential function making it into a model of the theory of the real exponential field. We also consider relative versions with more general coefficient fields. | |
dc.language.iso | en | |
dc.title.en | Exponential fields and Conway's omega-map | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Logique [math.LO] | |
dc.identifier.arxiv | 1810.03029 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01914494 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01914494v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BERARDUCCI,%20Alessandro&KUHLMANN,%20Salma&MANTOVA,%20Vincenzo&MATUSINSKI,%20Mickael&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |