Afficher la notice abrégée

hal.structure.identifierUniversity of Pisa [Italy] = Università di Pisa [Italia] = Université de Pise [Italie] [UniPi]
dc.contributor.authorBERARDUCCI, Alessandro
hal.structure.identifierFaculty of Mathematics and Computer Science [Konstanz]
dc.contributor.authorKUHLMANN, Salma
hal.structure.identifierSchool of Mathematics [Leeds]
dc.contributor.authorMANTOVA, Vincenzo
hal.structure.identifierÉquipe Géométrie
dc.contributor.authorMATUSINSKI, Mickael
dc.date.accessioned2024-04-04T03:04:33Z
dc.date.available2024-04-04T03:04:33Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193163
dc.description.abstractEnInspired by Conway's surreal numbers, we study real closed fields whose value group is isomorphic to the additive reduct of the field. We call such fields omega-fields and we prove that any omega-field of bounded Hahn series with real coefficients admits an exponential function making it into a model of the theory of the real exponential field. We also consider relative versions with more general coefficient fields.
dc.language.isoen
dc.title.enExponential fields and Conway's omega-map
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Logique [math.LO]
dc.identifier.arxiv1810.03029
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01914494
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01914494v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BERARDUCCI,%20Alessandro&KUHLMANN,%20Salma&MANTOVA,%20Vincenzo&MATUSINSKI,%20Mickael&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée