Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPRANGE, Christophe
dc.date.accessioned2024-04-04T03:04:22Z
dc.date.available2024-04-04T03:04:22Z
dc.date.issued2013
dc.identifier.issn0921-7134
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193146
dc.description.abstractEnThis paper is concerned with the homogenization of the Dirichlet eigenvalue problem, posed in a bounded domain $\Omega\subset\mathbb R^2$, for a vectorial elliptic operator $-\nabla\cdot A^\epsilon(\cdot)\nabla$ with $\epsilon$-periodic coefficients. We analyse the asymptotics of the eigenvalues $\lambda^{\epsilon,k}$ when $\epsilon\rightarrow 0$, the mode $k$ being fixed. A first-order asymptotic expansion is proved for $\lambda^{\epsilon,k}$ in the case when $\Omega$ is either a smooth uniformly convex domain, or a convex polygonal domain with sides of slopes satisfying a small divisors assumption. Our results extend those of Moskow and Vogelius restricted to scalar operators and convex polygonal domains with sides of rational slopes. We take advantage of the recent progress due to G\'erard-Varet and Masmoudi in the homogenization of boundary layer type systems.
dc.language.isoen
dc.publisherIOS Press
dc.title.enFirst-order expansion for the Dirichlet eigenvalues of an elliptic system with oscillating coefficients
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv1111.2517
bordeaux.journalAsymptotic Analysis
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01915579
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01915579v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Asymptotic%20Analysis&rft.date=2013&rft.eissn=0921-7134&rft.issn=0921-7134&rft.au=PRANGE,%20Christophe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée