Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorRICOTTA, Guillaume
hal.structure.identifierLaboratoire de Mathématiques Blaise Pascal [LMBP]
dc.contributor.authorROYER, Emmanuel
dc.date.accessioned2024-04-04T03:04:18Z
dc.date.available2024-04-04T03:04:18Z
dc.date.issued2018-09-10
dc.identifier.issn0010-2571
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193140
dc.description.abstractEnEmmanuel Kowalski and William Sawin proved, using a deep independence result of Kloosterman sheaves, that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums S(a,b0;p)/p^{1/2} converge in the sense of finite distributions to a specific random Fourier series, as a varies over (Z/pZ)^*, b0 is fixed in (Z/pz)* and p tends to infinity among the odd prime numbers. This article considers the case of S(a,b0;p^n)/p^{n/2}, as a varies over (Z/p^nZ)^*, b0 is fixed in (Z/p^nZ)^*, p tends to infinity among the odd prime numbers and n>=2 is a fixed integer. A convergence in law in the Banach space of complex-valued continuous function on [0,1] is also established, as (a,b) varies over (Z/p^nZ)*.(Z/p^nZ)*, p tends to infinity among the odd prime numbers and n>=2 is a fixed integer. This is the analogue of the result obtained by Emmanuel Kowalski and William Sawin in the prime moduli case.
dc.language.isoen
dc.publisherEuropean Mathematical Society
dc.title.enKloosterman paths of prime powers moduli
dc.typeArticle de revue
dc.identifier.doi10.4171/CMH/442
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.subject.halMathématiques [math]/Anneaux et algèbres [math.RA]
dc.identifier.arxiv1609.03694
bordeaux.journalCommentarii Mathematici Helvetici
bordeaux.page493-532
bordeaux.volume93
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01917568
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01917568v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Commentarii%20Mathematici%20Helvetici&rft.date=2018-09-10&rft.volume=93&rft.issue=3&rft.spage=493-532&rft.epage=493-532&rft.eissn=0010-2571&rft.issn=0010-2571&rft.au=RICOTTA,%20Guillaume&ROYER,%20Emmanuel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée