Towards the modelling of the Purkinje/ myocardium coupled problem: A well-posedness analysis
hal.structure.identifier | Université de Tunis El Manar [UTM] | |
dc.contributor.author | AOUADI, Saloua | |
hal.structure.identifier | Université de Tunis El Manar [UTM] | |
dc.contributor.author | MBARKI, Wajih | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
dc.contributor.author | ZEMZEMI, Nejib | |
dc.date.accessioned | 2024-04-04T03:04:16Z | |
dc.date.available | 2024-04-04T03:04:16Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0377-0427 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193137 | |
dc.description.abstractEn | The Purkinje network is the specialized conduction system in the heart. It ensures the physiological spread of the electrical wave in the ventricles. In this work, in an insulated heart framework, we model the free running Purkinje system, using the monodomain equation. The intra-myocardium part of the Purkinje fiber is coupled to the ventricular tissue using the bidomain equation. The coupling is performed through the extracellular potential. We discretize the problem in time using a semi-implicit scheme. Then, we write a variational formulation of the semi discrete problem in a non standard weighted Sobolev functional spaces. We prove the existence and uniqueness of the solution of the Purkinje/myocardium semi-discretized problem. We discretize in space by the finite element P 1 − Lagrange and conduct some numerical tests showing the anterograde and retrograde propagation of the electrical wave between the tissue and the Purkinje fibers. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Semi-implicit scheme | |
dc.subject.en | Monodomain/bidomain | |
dc.subject.en | Purkinje/myocardium | |
dc.subject.en | Discrete problem | |
dc.subject.en | Weighted Sobolev spaces | |
dc.title.en | Towards the modelling of the Purkinje/ myocardium coupled problem: A well-posedness analysis | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.cam.2018.10.024 | |
dc.subject.hal | Informatique [cs]/Modélisation et simulation | |
dc.subject.hal | Mathématiques [math] | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Journal of Computational and Applied Mathematics | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01923779 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01923779v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20and%20Applied%20Mathematics&rft.date=2019&rft.eissn=0377-0427&rft.issn=0377-0427&rft.au=AOUADI,%20Saloua&MBARKI,%20Wajih&ZEMZEMI,%20Nejib&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |