Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorHEGOBURU, Nicolas
dc.date.accessioned2024-04-04T03:04:10Z
dc.date.available2024-04-04T03:04:10Z
dc.date.issued2019-12
dc.identifier.issn2156-8472
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193128
dc.description.abstractEnThis work is devoted to establish a bang-bang principle of time optimal controls for a controlled age-structured population evolving in a bounded domain of R^n. Here, the bang-bang principle is deduced by an L^∞ null-controllability result for the Lotka-McKendrick equation with spatial diffusion. This L^∞ null-controllability result is obtained by combining a methodology employed by Hegoburu and Tucsnak-originally devoted to study the null-controllability of the Lotka-McKendrick equation with spatial diffusion in the more classical L^2 setting-with a strategy developed by Wang, originally intended to study the time optimal internal controls for the heat equation.
dc.language.isoen
dc.publisherAIMS
dc.title.enTime optimal internal controls for the Lotka-McKendrick equation with spatial diffusion
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Optimisation et contrôle [math.OC]
bordeaux.journalMathematical Control and Related Fields
bordeaux.page697-718
bordeaux.volume9
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01925980
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01925980v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Control%20and%20Related%20Fields&rft.date=2019-12&rft.volume=9&rft.issue=4&rft.spage=697-718&rft.epage=697-718&rft.eissn=2156-8472&rft.issn=2156-8472&rft.au=HEGOBURU,%20Nicolas&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée