Afficher la notice abrégée

hal.structure.identifierFacultad de Ciencias Físico Matemáticas [Puebla] [FCFM BUAP]
dc.contributor.authorHERNÁNDEZ-MONTERO, Eduardo
hal.structure.identifierFacultad de Ciencias Físico Matemáticas [Puebla] [FCFM BUAP]
dc.contributor.authorFRAGUELA-COLLAR, Andrés
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorHENRY, Jacques
dc.date2018
dc.date.accessioned2024-04-04T03:03:58Z
dc.date.available2024-04-04T03:03:58Z
dc.date.issued2018
dc.identifier.issn0973-5348
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193112
dc.description.abstractEnThe inverse ECG problem is set as a boundary data completion for the Laplace equation: at each time the potential is measured on the torso and its normal derivative is null. One aims at reconstructing the potential on the heart. A new regularization scheme is applied to obtain an optimal regularization strategy for the boundary data completion problem. We consider the R n+1 domain Ω. The piecewise regular boundary of Ω is defined as the union ∂Ω = Γ1 ∪ Γ0 ∪ Σ, where Γ1 and Γ0 are disjoint, regular, and n-dimensional surfaces. Cauchy boundary data is given in Γ0, and null Dirichlet data in Σ, while no data is given in Γ1. This scheme is based on two concepts: admissible output data for an ill-posed inverse problem, and the conditionally well-posed approach of an inverse problem. An admissible data is the Cauchy data in Γ0 corresponding to an harmonic function in C 2 (Ω) ∩ H 1 (Ω). The methodology roughly consists of first characterizing the admissible Cauchy data, then finding the minimum distance projection in the L 2-norm from the measured Cauchy data to the subset of admissible data characterized by given a priori information, and finally solving the Cauchy problem with the aforementioned projection instead of the original measurement.
dc.language.isoen
dc.publisherEDP Sciences
dc.subject.enOptimal regularization
dc.subject.enQuasi solution
dc.subject.enInvariant embedding
dc.subject.enCauchy problem
dc.subject.enFactorization method
dc.subject.enECG inverse problem
dc.title.enAn optimal quasi solution for the cauchy problem for laplace equation in the framework of inverse ECG
dc.typeArticle de revue
dc.identifier.doi10.1051/mmnp/2018062
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie
bordeaux.journalMathematical Modelling of Natural Phenomena
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01933948
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01933948v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Modelling%20of%20Natural%20Phenomena&rft.date=2018&rft.eissn=0973-5348&rft.issn=0973-5348&rft.au=HERN%C3%81NDEZ-MONTERO,%20Eduardo&FRAGUELA-COLLAR,%20Andr%C3%A9s&HENRY,%20Jacques&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée