Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierCentre d'Etudes Lasers Intenses et Applications [CELIA]
dc.contributor.authorGUISSET, S
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBRULL, Stéphane
hal.structure.identifierCentre d'Etudes Lasers Intenses et Applications [CELIA]
dc.contributor.authorD'HUMIÈRES, E.
hal.structure.identifierCentre d'Etudes Lasers Intenses et Applications [CELIA]
dc.contributor.authorDUBROCA, B.
dc.date.accessioned2024-04-04T03:03:53Z
dc.date.available2024-04-04T03:03:53Z
dc.date.issued2017
dc.identifier.issn0764-583X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193107
dc.description.abstractEnThis work is devoted to the derivation of an asymptotic-preserving scheme for the electronic M1 model in the diffusive regime. The case without electric field and the homogeneous case are studied. The derivation of the scheme is based on an approximate Riemann solver where the intermediate states are chosen consistent with the integral form of the approximate Riemann solver. This choice can be modified to enable the derivation of a numerical scheme which also satisfies the admissible conditions and is well-suited for capturing steady states. Moreover, it enjoys asymptotic-preserving properties and handles the diffusive limit recovering the correct diffusion equation. Numerical tests cases are presented, in each case, the asymptotic-preserving scheme is compared to the classical HLL [43] scheme usually used for the electronic M1 model. It is shown that the new scheme gives comparable results with respect to the HLL scheme in the classical regime. On the contrary, in the diffusive regime, the asymptotic-preserving scheme coincides with the expected diffusion equation, while the HLL scheme suffers from a severe lack of accuracy because of its unphysical numerical viscosity.
dc.language.isoen
dc.publisherEDP Sciences
dc.title.enASYMPTOTIC-PRESERVING WELL-BALANCED SCHEME FOR THE ELECTRONIC M 1 MODEL IN THE DIFFUSIVE LIMIT: PARTICULAR CASES.
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalESAIM: Mathematical Modelling and Numerical Analysis
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01934338
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01934338v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ESAIM:%20Mathematical%20Modelling%20and%20Numerical%20Analysis&rft.date=2017&rft.eissn=0764-583X&rft.issn=0764-583X&rft.au=GUISSET,%20S&BRULL,%20St%C3%A9phane&D'HUMI%C3%88RES,%20E.&DUBROCA,%20B.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée