A diffusive SI model with Allee effect and application to FIV
dc.contributor.author | HILKER, F.M. | |
hal.structure.identifier | Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | LANGLAIS, Michel | |
dc.contributor.author | PETROVSKII, S. | |
dc.contributor.author | MALCHOW, H. | |
dc.date.accessioned | 2024-04-04T03:03:11Z | |
dc.date.available | 2024-04-04T03:03:11Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 0025-5564 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193048 | |
dc.description.abstractEn | A minimal reaction–diffusion model for the spatiotemporal spread of an infectious disease is considered. The model is motivated by the Feline Immunodeficiency Virus (FIV) which causes AIDS in cat populations. Because the infected period is long compared with the lifespan, the model incorporates the host population growth. Two different types are considered: logistic growth and growth with a strong Allee effect. In the model with logistic growth, the introduced disease propagates in form of a travelling infection wave with a constant asymptotic rate of spread. In the model with Allee effect the spatiotemporal dynamics are more complicated and the disease has considerable impact on the host population spread. Most importantly, there are waves of extinction, which arise when the disease is introduced in the wake of the invading host population. These waves of extinction destabilize locally stable endemic coexistence states. Moreover, spatially restricted epidemics are possible as well as travelling infection pulses that correspond either to fatal epidemics with succeeding host population extinction or to epidemics with recovery of the host population. Generally, the Allee effect induces minimum viable population sizes and critical spatial lengths of the initial distribution. The local stability analysis yields bistability and the phenomenon of transient epidemics within the regime of disease-induced extinction. Sustained oscillations do not exist. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Epidemiology | |
dc.subject.en | SI model | |
dc.subject.en | Allee effect | |
dc.subject.en | Bistability | |
dc.subject.en | Reaction–diffusion system | |
dc.subject.en | Travelling waves | |
dc.subject.en | Spatial spread | |
dc.title.en | A diffusive SI model with Allee effect and application to FIV | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.mbs.2005.10.003 | |
dc.subject.hal | Sciences du Vivant [q-bio]/Ecologie, Environnement/Santé | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Mathematical Biosciences | |
bordeaux.page | 61-80 | |
bordeaux.volume | 206 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00195449 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00195449v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Biosciences&rft.date=2007&rft.volume=206&rft.spage=61-80&rft.epage=61-80&rft.eissn=0025-5564&rft.issn=0025-5564&rft.au=HILKER,%20F.M.&LANGLAIS,%20Michel&PETROVSKII,%20S.&MALCHOW,%20H.&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |