Afficher la notice abrégée

dc.contributor.authorHILKER, F.M.
hal.structure.identifierTools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLANGLAIS, Michel
dc.contributor.authorPETROVSKII, S.
dc.contributor.authorMALCHOW, H.
dc.date.accessioned2024-04-04T03:03:11Z
dc.date.available2024-04-04T03:03:11Z
dc.date.issued2007
dc.identifier.issn0025-5564
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193048
dc.description.abstractEnA minimal reaction–diffusion model for the spatiotemporal spread of an infectious disease is considered. The model is motivated by the Feline Immunodeficiency Virus (FIV) which causes AIDS in cat populations. Because the infected period is long compared with the lifespan, the model incorporates the host population growth. Two different types are considered: logistic growth and growth with a strong Allee effect. In the model with logistic growth, the introduced disease propagates in form of a travelling infection wave with a constant asymptotic rate of spread. In the model with Allee effect the spatiotemporal dynamics are more complicated and the disease has considerable impact on the host population spread. Most importantly, there are waves of extinction, which arise when the disease is introduced in the wake of the invading host population. These waves of extinction destabilize locally stable endemic coexistence states. Moreover, spatially restricted epidemics are possible as well as travelling infection pulses that correspond either to fatal epidemics with succeeding host population extinction or to epidemics with recovery of the host population. Generally, the Allee effect induces minimum viable population sizes and critical spatial lengths of the initial distribution. The local stability analysis yields bistability and the phenomenon of transient epidemics within the regime of disease-induced extinction. Sustained oscillations do not exist.
dc.language.isoen
dc.publisherElsevier
dc.subject.enEpidemiology
dc.subject.enSI model
dc.subject.enAllee effect
dc.subject.enBistability
dc.subject.enReaction–diffusion system
dc.subject.enTravelling waves
dc.subject.enSpatial spread
dc.title.enA diffusive SI model with Allee effect and application to FIV
dc.typeArticle de revue
dc.identifier.doi10.1016/j.mbs.2005.10.003
dc.subject.halSciences du Vivant [q-bio]/Ecologie, Environnement/Santé
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalMathematical Biosciences
bordeaux.page61-80
bordeaux.volume206
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00195449
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00195449v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Biosciences&rft.date=2007&rft.volume=206&rft.spage=61-80&rft.epage=61-80&rft.eissn=0025-5564&rft.issn=0025-5564&rft.au=HILKER,%20F.M.&LANGLAIS,%20Michel&PETROVSKII,%20S.&MALCHOW,%20H.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée