Mostrar el registro sencillo del ítem

hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorCORTESI, Andrea Francesco
hal.structure.identifierCESI : groupe d’Enseignement Supérieur et de Formation Professionnelle [CESI]
dc.contributor.authorJANNOUN, Ghina
hal.structure.identifierShape reconstruction and identification [DeFI]
hal.structure.identifierCentre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
dc.contributor.authorCONGEDO, Pietro Marco
dc.date2019-03-01
dc.date.issued2019-03-01
dc.identifier.issn0021-9991
dc.description.abstractEnUncertainty Quantification and Sensitivity Analysis problems are made more difficult in the case of applications involving expensive computer simulations. This is because a limited amount of simulations is available to build a sufficiently accurate metamodel of the quantities of interest.In this work, an algorithm for the construction of a low-cost and accurate metamodel is proposed, having in mind computationally expensive applications. It has two main features. First, Universal Kriging is coupled with sparse Polynomial Dimensional Decomposition (PDD) to build a metamodel with improved accuracy. The polynomials selected by the adaptive PDD representation are used as a sparse basis to build a Universal Kriging surrogate model. Secondly, a numerical method, derived from anisotropic mesh adaptation, is formulated in order to adaptively insert a fixed number of new training points to an existing Design of Experiments.The convergence of the proposed algorithm is analyzed and assessed on different test functions with an increasing size of the input space. Finally, the algorithm is used to propagate uncertainties in two high-dimensional real problems related to the atmospheric reentry.
dc.language.isoen
dc.publisherElsevier
dc.subject.enSurrogate modeling
dc.subject.enUniversal kriging
dc.subject.enSparse polynomial dimensional decomposition
dc.subject.enAnisotropic adaptive meshing
dc.subject.enAdaptive refinement
dc.title.enKriging-sparse Polynomial Dimensional Decomposition surrogate model with adaptive refinement
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2018.10.051
dc.subject.halPhysique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn]
bordeaux.journalJournal of Computational Physics
bordeaux.page212-242
bordeaux.volume380
bordeaux.peerReviewedoui
hal.identifierhal-01914383
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01914383v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2019-03-01&rft.volume=380&rft.spage=212-242&rft.epage=212-242&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=CORTESI,%20Andrea%20Francesco&JANNOUN,%20Ghina&CONGEDO,%20Pietro%20Marco&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem