Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorABGRALL, Remi
hal.structure.identifierCentre d'Etudes Lasers Intenses et Applications [CELIA]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorPERRIER, Vincent
dc.date.accessioned2024-04-04T03:01:57Z
dc.date.available2024-04-04T03:01:57Z
dc.date.created2005-02-04
dc.date.issued2006-01-01
dc.identifier.issn1540-3459
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192937
dc.description.abstractEnThe simulation of compressible multiphase problems is a difficult task for modelization and mathematical reasons. Here, thanks to a probabilistic multiscale interpretation of multiphase flows, we construct a numerical scheme that provides a solution to these difficulties. Three types of terms can be identified in the scheme in addition to the temporal term. One is a conservative term, the second one plays the role of a nonconservative term that is related to interfacial quantities, and the last one is a relaxation term that is associated with acoustic phenomena. The key feature of the scheme is that it is {\em locally\/} conservative, contrarily to many other schemes devoted to compressible multiphase problems. In many physical situations, it is reasonable to assume that the relaxation is instantaneous. We present an asymptotic expansion of the scheme that keeps the local conservation properties of the original scheme. The asymptotic expansion relies on the understanding of an equilibrium variety. Its structure depends, in principle, on the Riemann solver. We show that it is not the case for several standard solvers, and hence this variety is characterized by the local pressure and velocity of the flow. Several numerical test cases are presented in order to demonstrate the potential of this technique.
dc.language.isoen
dc.publisherSociety for Industrial and Applied Mathematics
dc.subject.enRiemann solvers
dc.subject.encompressible multiphase flows
dc.subject.enasymptotic expansion
dc.subject.enRiemann solvers
dc.subject.enRiemann solvers
dc.subject.enRiemann solvers
dc.title.enAsymptotic Expansion of a Multiscale Numerical Scheme for Compressible Multiphase Flow
dc.typeArticle de revue
dc.identifier.doi10.1137/050623851
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalMultiscale Modeling and Simulation: A SIAM Interdisciplinary Journal
bordeaux.page84-115
bordeaux.volume5
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00203660
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00203660v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Multiscale%20Modeling%20and%20Simulation:%20A%20SIAM%20Interdisciplinary%20Journal&rft.date=2006-01-01&rft.volume=5&rft.issue=1&rft.spage=84-115&rft.epage=84-115&rft.eissn=1540-3459&rft.issn=1540-3459&rft.au=ABGRALL,%20Remi&PERRIER,%20Vincent&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée