Afficher la notice abrégée

hal.structure.identifierCentre de Mathématiques et de Leurs Applications [CMLA]
dc.contributor.authorDE BORTOLI, Valentin
hal.structure.identifierCentre de Mathématiques et de Leurs Applications [CMLA]
dc.contributor.authorDESOLNEUX, Agnès
hal.structure.identifierInstitut Denis Poisson [IDP]
dc.contributor.authorGALERNE, Bruno
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLECLAIRE, Arthur
dc.date.accessioned2024-04-04T03:01:28Z
dc.date.available2024-04-04T03:01:28Z
dc.date.conference2019-06-30
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192904
dc.description.abstractEnIn this article we consider macrocanonical models for texture synthesis. In these models samples are generated given an input texture image and a set of features which should be matched in expectation. It is known that if the images are quantized, macrocanonical models are given by Gibbs measures, using the maximum entropy principle. We study conditions under which this result extends to real-valued images. If these conditions hold, finding a macrocanonical model amounts to minimizing a convex function and sampling from an associated Gibbs measure. We analyze an algorithm which alternates between sampling and minimizing. We present experiments with neural network features and study the drawbacks and advantages of using this sampling scheme.
dc.language.isoen
dc.subject.enTexture synthesis
dc.subject.enGibbs measure
dc.subject.enMonte Carlo methods
dc.subject.enLangevin algorithms
dc.subject.enNeural networks
dc.title.enMacrocanonical Models for Texture Synthesis
dc.typeCommunication dans un congrès
dc.identifier.doi10.1007/978-3-030-22368-7_2
dc.subject.halStatistiques [stat]/Applications [stat.AP]
dc.subject.halInformatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
bordeaux.volume11603
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleScale Space and Variational Methods in Computer Vision. SSVM 2019
bordeaux.countryDE
bordeaux.conference.cityHofgeismar
bordeaux.peerReviewedoui
hal.identifierhal-02093364
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2019-07-04
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02093364v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.volume=11603&rft.au=DE%20BORTOLI,%20Valentin&DESOLNEUX,%20Agn%C3%A8s&GALERNE,%20Bruno&LECLAIRE,%20Arthur&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée